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Abstract

Unit testing is crucial for ensuring code validity, and extensive
research has been conducted to advance this domain. However,
existing studies fail to address critical industry requirements, par-
ticularly support for multi-language static analysis and real-time
unit test generation. While integrating static analysis with a Large
LanguageModel could address these challenges, it typically requires
significant manual effort to implement across diverse programming
languages. To address this, we propose LspAi, an automated unit test
generation tool that leverages well-established language analysis
tools and integrates them into a unified development environment
via the Language Server Protocol. This approach equips LLM with
multi-language static analysis capabilities, allowing a single tool to
support systematic unit test generation across multiple languages.
We evaluate our method by comparing line coverage across var-
ious LLMs and programming languages, demonstrating superior
performance and broader applicability. Our evaluation of LspAi on
real-world projects showed line coverage improvements of 114.3%
for Java, 850% for Golang, and 3.03% for Python, along with en-
hancements in the valid ratio for most cases. In addition, we also
share our lessons learned from applying the tool in Tencent Ltd.
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1 Introduction

Unit testing plays a pivotal role in modern software development
by ensuring the validity and reliability of code. As software systems
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grow in complexity, the importance of robust unit tests cannot be
overstated, serving as a fundamental practice for identifying defects
early and facilitating maintainable codebases. Extensive research
has been dedicated to automating unit test generation, leading to the
development of Search-Based Software Testing (SBST) tools such
as EvoSuite [10], Randoop [25], and Pynguin [20]. More recently,
the evolution of Large Language Models (LLMs) has introduced a
new paradigm for unit test generation. Models like GPT [5] and
Copilot [12] can understand the context of the code and generate
semantically relevant unit tests, significantly improving software
development efficiency.

Despite significant advancements, LLMs are still prone to gen-
erating incorrect unit tests. For example, Copilot, one of the most
popular tools used by many companies, is still capable of making
mistakes, as acknowledged by the Copilot development team [21].
Similarly, Siddiq et al. [28] found that LLM-generated test cases
yield a relatively low validity rate, ranging from 2% to 12.7%, based
on the SF110 [11] benchmark. As a result, researchers have proposed
integrating static analysis with LLMs to help them better under-
stand context and generate more accurate unit tests [16, 33, 35].
However, current research does not address the following two fun-
damental requirements of the software industry, which limits the
broader adoption of these approaches in real-world settings.

First, performing static analysis across multiple program-

ming languages is challenging. Industries adopt a variety of pro-
gramming languages for different projects, and a test case generator
should ideally support multiple languages. However, as shown in
Table 1, most academic research has focused on one specific lan-
guage rather than multi-language support. This focus stems from
the difficulty of performing unified static analysis across diverse
languages. Therefore, developers are forced to build customized
analysis pipelines for each language, which requires significant
manual adaptation effort. As a result, as far as we know, there
are currently no academic tools available that can generate multi-
language unit tests using static analysis.

Second, it is challenging to support real-time unit test

generation when integrating static analysis. Developers often
write unit tests concurrently with writing code. However, current
SBST tools and LLM-integrated tools are unsuitable for scenarios
requiring instant test generation, as they typically require the com-
pilation of entire projects to perform static analysis and collect
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coverage feedback. Consequently, the reliance of SBST tools on cov-
erage feedback to enhance test case quality limits their feasibility
for real-time use. This issue also persists in recent LLM-integrated
tools [1, 2, 16, 17, 33, 35], which depend on heavy static analysis
and coverage feedback to mitigate LLM hallucinations. As a result,
no academic tool currently supports real-time unit test generation,
as illustrated in Table 1.

To tackle the aforementioned challenges, we introduce LspAi,
a real-time unit test generation tool powered by LLMs and inte-
grated with static analysis for multi-language codebases. Our key
insight is that well-established language analysis tools exist for
each programming language and can be accessed through the Lan-
guage Server Protocol (LSP) in a unified way. By leveraging the LSP,
we can perform lightweight static analysis on multiple languages
within a single environment with minimal effort. Specifically, LspAi
operates in two main steps: First, LspAi conducts dependency anal-
ysis by extracting key tokens from the focal method and retrieves
the corresponding dependent source code. Second, using the re-
trieved dependency source code, LspAi performs real-time unit test
generation and fixing. This approach effectively leverages reliable
static analysis tools to improve LLMs’ ability.

LspAi brings two main benefits to developers who work in indus-
tries. First, LspAi supports real-time unit test generation without
whole project compilation, allowing developers to generate unit tests
concurrently with code writing. Second, LspAi simplifies the setup
process by only requiring a simple installation of relevant language
analysis plugins (e.g., extensions for Visual Studio Code), making it
easily adaptable to various programming languages.

We developed LspAi as an IDE (Integrated Development Environ-
ment) plugin for seamless integration and evaluated its performance
across three widely used programming languages: Java, Python,
and Golang. Our evaluation shows that LspAi consistently improves
unit test performance in terms of line coverage across real-world
projects, regardless of the programming language. Specifically, it
achieves a line coverage increase of 181.78% for Java, 850% for
Golang, and 3.03% for Python compared to the baseline. Addition-
ally, LspAi improves the valid ratio for the target real-world projects,
achieving increases of 114.39% for Java and 483.6% for Golang and
3.90% for Python. In addition, we also share our lessons learned
from applying the tool in Tencent Ltd.
• We identified a research gap in current unit test generation: the
lack of support for multi-language codebases and real-time test
generation scenarios.

• We designed LspAi as an IDE plugin, a practical tool that gener-
ates effective unit tests across multiple programming languages.

Table 1: Literature analysis which shows current research

gap on unit test generation.

Tools Real-Time Multi-Language Static Analysis Support
Java Python Golang Others

UTGen [4], EvoSuite [10, 18, 37], Ran-
doop [25], HITS [33] , casmoda [24],
testspark [27], ChatUniTest [35]

✗ ✗ ✓ ✗ ✗ ✗

PynGuin [20], CodaMosa [16],
CoverUp [1], MuTAP [3] , TELPA [36],
SymPrompt [26], CLAP [31]

✗ ✗ ✗ ✓ ✗ ✗

NxtUnitGo [32] ✗ ✗ ✗ ✗ ✓ ✗

Copilot [12] ✓ ✓ ✗ ✗ ✗ ✗

LspAi
✓ ✓ ✓ ✓ ✓ ✓
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Figure 1: Overall workflow of LspAi.

The source code can be found at https://github.com/Gwihwan-
Go/LSPAI/tree/fse-industry.

• We evaluated LspAi in real-world projects written in three pro-
gramming languages, demonstrating its ability to consistently
improve unit test performance. LspAi achieved line coverage
improvements of 114.3% for Java, 850% for Golang, and 3.03% for
Python, along with enhanced valid test ratios for most projects.

2 Background

The Language Server Protocol (LSP) [22] is a standardized way for
development tools, like text editors and IDEs, to communicate with
language servers. A Language Server is meant to provide language-
specific tasks, such as static analysis and code action recommen-
dations. The main idea behind LSP is to provide a single, unified
protocol that allows a language server to be used across differ-
ent development environments, supporting multiple programming
languages with minimal additional setup. This means that develop-
ment tools can access advanced features for many programming
languages through the same protocol, making it easier to work with
different languages without needing to implement those features
from scratch. Before LSP, features like syntax highlighting and
code completion had to be written separately for each development
environment and programming language. With LSP, however, edi-
tors can simply connect to a language server, which provides these
features automatically, saving time and effort.

3 Design of LspAi

This section describes the design of LspAi, a unit test generation
tool that enhances unit test creation through multi-language static
analysis aided by LSP. Figure 1 illustrates LspAi’s overall workflow.
When the developer requests unit test generation for a specific
method, LspAi generates a unit test following two steps. First, LspAi
collects dependency information for the givenmethod by extracting
and retrieving token definitions. Second, it generates the unit test
based on the collected dependency information. The generated unit
test is then analyzed using LSP. If any issues are detected, LspAi
retrieves the necessary dependencies and corrects the errors.

3.1 Employed LSP Features

LspAi leverages the advantages of LSP, conducting static analysis
using features provided by the language server. In this way, LspAi
can do consistent analysis across different IDEs and programming
languages with the unified pipeline. Specifically, LspAi utilizes the
following features provided by the language server.
Symbol Provider. In LSP, symbols represent code entities such as
files, modules, classes, functions, and variables within the source
code. When LspAi requests symbols for a specific file path, the
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language server returns a hierarchical structure of these symbols
found in the given text document. LspAi leverages the Symbol
Provider to identify unit test entries through these symbols and to
locate variable definitions by traversing the collected symbols.
Semantic Token Provider. Tokens are the smallest elements of
code that can be broken down [23]. Semantic tokens extend tokens
by adding contextual information, utilizing language servers that
deeply understand the source file. When LspAi requests semantic
tokens for a specific range, the language server returns an array of
objects, each containing the context information of the token and
its range. The Semantic Token Provider allows LspAi to determine
how each token is used, facilitating a more granular and precise
analysis of methods, variables, and other constructs.
Definition Provider. This feature plays a crucial role in analyzing
dependencies for a target function by identifying the locations of
function or class declarations. When LspAi requests the Definition
Provider for a specific token, it returns the locations of token defini-
tions. This capability allows LspAi to accurately map dependencies
within the codebase, ensuring comprehensive analysis of the target
functions or classes.
Reference Provider. The Reference Provider enables LspAi to iden-
tify all occurrences of a particular symbol within the codebase. By
requesting references for a specific symbol, the language server
returns a list of locations where the symbol is used. This feature is
essential for understanding the context and usage patterns of the
symbol, which aids in accurately determining dependencies and
ensuring that generated unit tests cover relevant interactions.
Diagnosis Provider. It is vital for increasing the validity of the
generated code. When LspAi requests a diagnosis, the Diagnosis
Provider provided by the language server analyzes the code using
its understanding of the source, detects any warnings or errors, and
provides their specific locations. This allows LspAi to effectively
identify and rectify issues in the generated code.

3.2 Dependency Analysis

This module gathers dependency information to generate reliable
unit tests with high coverage. The dependency information is col-
lected in three steps: token filtering, dependency retrieval, and
reference retrieval. Through this process, LspAi acquires stream-
lined, high-quality dependency information.
Token Filtering. This step enhances the quality of the data to be
collected by extracting tokens that are more likely to be relevant to
the focal method. A focal method that requires testing is typically
complex, containing numerous tokens. Analyzing every token of
the method would generate a large amount of unnecessary data,
most of which would not contribute to unit test generation. For
example, the parse method in the Parser class of the commons-
cli [6] project contains over 100 tokens within approximately 40
lines of code. Analyzing and retrieving information for over 100
tokens is inefficient and does not effectively enhance the quality
of unit tests. Therefore, appropriate token filtering is essential.
The token filtering strategy of LspAi involves two main steps:
(1) Selecting Key Tokens: LspAi consider a token is important if
it is given by the argument value of the method or is returned
by the method. (2) Selecting Associated Tokens: LspAi determine
whether the tokens are associated with key tokens, utilizing the

knowledge of the language server. Specifically, it requests the role
of tokens that co-located with the key tokens by examining their
types and modifiers through Semantic Token Provider. A co-located
token is considered meaningful if the language server considers the
token’s role as declaring or defining. Following the above steps, the
100 tokens under parse method can be streamlined to 10 tokens.
Ultimately, this module returns the extracted tokens, which LspAi
uses to retrieve further information.
Dependency Retrieval. This step involves a strategy to extract
relevant dependency information from the given tokens, ensuring
LspAi retains only essential data for unit test generation while
discarding unnecessary details from the language server. This is im-
portant because retrieved dependency information is often verbose,
including comments, unrelated properties, or large code snippets.
This can hinder unit test generation and degrade LspAi’s perfor-
mance. To address this, we apply heuristic rules based on LSP
knowledge. First, by requesting the Definition Provider using the
token’s position, we collect the symbol that defines the token. Next,
using the Symbol Provider, we identify the symbol’s type (e.g., func-
tion, class, method, variable, or property). Finally, we summarize
the relevant code snippet based on the symbol type. For example,
functions are summarized by their return type and input argu-
ments, while methods are summarized with their return type, input
arguments, and associated class member properties.
Reference Retrieval. Refering to the use case of the focal method
can enhance the correctness of generated test codes. Especially
for LLM, which determines its output based on context, much re-
search [13, 34] has proved that giving an example can enhance
the quality of its output. In this regard, LspAi collects every use
case of the focal method, utilizing Reference Provider. The collected
reference information is then passed to the next step along with
the dependency information and is used to generate unit test code.

3.3 Unit Test Generation

This module is responsible for generating reliable unit tests with
high coverage without compiling or executing code. It leverages
the given dependency information and LLM to generate unit tests.
Subsequently, to mitigate the limitations of LLM, it detects issues
in the generated code and fixes them.
Dependency-Aware Generation. LspAi generates unit tests by in-
corporating information passed by the section 3.2. In detail, We con-
struct the prompt incorporating the source code of the focal method,
natural language description, and retrieved information.1 We con-
struct our prompt template based on that of ChatUniTest [35]. Since
this template is Java-specific, for generating unit tests in other pro-
gramming languages, we slightly modify the prompt accordingly.
The final prompt ranges from 1000 to 1,500 tokens, depending on
the length of the focal method. The constructed prompt is then
provided to a LLM to produce the unit test.
LSP-Guided Diagnosis. This component detects issues in the gen-
erated test code in real-time without the need for compilation or
execution. LLMs can produce syntactically incorrect or incompi-
lable code due to hallucinations. Hallucination [14, 15] refers to
the generation of syntactically incorrect or semantically invalid

1For detailed prompt snippets used by LspAi, refer to https://github.com/Gwihwan-
Go/LSPAI/tree/fse-industry/src/promptBuilder.ts
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code that deviates from the desired output. However, in a real-time
generation setting, where compilation or execution is not feasible,
we need alternative methods to mitigate the LLM’s hallucinations.
LspAi utilizes Diagnosis Provider supported by LSP to inspect the
generated code. If Diagnosis Provider does not detect any issues,
LspAi saves the unit test code, if there is any issue, LspAi collects
them and prioritize based on severity.
Dependency-Aware Error Fix. This step integrates dependency
information to effectively fix errors. Based on the diagnosis, LspAi
identifies the related symbol and retrieves the necessary depen-
dency information using the Symbol Provider. This information is
then incorporated into the prompt to assist the LLM in correcting
the error alongside the necessary dependency source code. The
constructed prompt is sent to the LLM to fix the code. After the fix
is made, LspAi returns to the LSP-Guided Diagnosis step to verify
whether the issue has been resolved. If the error is fixed or the
iteration limit is reached, the corrected code is saved and presented
to the developers.

4 Evaluation

In this section, we comprehensively evaluate the performance of
LspAi by evaluating the LspAi’s performance on real-world projects
across different programming languages.

4.1 Experiment Setup

Programming languages.We selected three different program-
ming languages, Python, Java, and Golang, for the experiment. We
selected Python and Java because their unit test generation capa-
bilities have been extensively studied in previous research. Golang
was chosen for two reasons: (1) it is widely used in industry but has
received relatively little attention in academic studies, and (2) as a
relatively new language, we anticipate it presents unique challenges
for LLMs in generating valid code.
Real-world Projects. For a fair evaluation, we selected real-world
projects from either (1) benchmarks used in previous research or
(2) projects that are widely adopted by the community. As Table 2
shows, we selected two projects for each programming language.
For Java code bases, we choose Commons-CLI [6] and Commons-
CSV [7], which are commonly selected as benchmarks by previous
research [33, 35] of unit test domain. For Golang code bases, we
chose Logrus [29], and Cobra [9], because they are also selected by
previous research [32] for evaluating unit test performance. Finally,
for Python, we chose Black [8], which is also widely selected as a
benchmark by previous research [16, 20]. We chose Crawl4AI [30]
to test the ability of LLM’s code generation ability against a rela-
tively new project that is not included in LLM training datasets. The
Crawl4AI project is one of the most trending projects in GitHub
with 24.6k stars, released in May 2024, which is well-developed
while surely unseen in the training dataset of LLMs.
LLMs and Environment. We evaluate the effectiveness of LspAi
on three kinds of LLMs, including GPT4o [5], GPT4o-mini, and
DeepSeek-V3 (DS-V3) [19], which are popular choices in LLM appli-
cations. We adopt the default temperature and generation settings
for all LLMs. We conducted our evaluation on a machine equipped
with an AMD EPYC 7763 CPU (2.25GHz) with 128 cores and 8
NVIDIA GPU (V100-32G), running Ubuntu 22.04 LTS.

Table 2: Dataset Statistics

Project Abbr. Domain Version Language

Commons-CLI [6] CLI Cmd-line Interface eb541428 Java
Commons-CSV [7] CSV Csv file Processing 92e486ac Java
Logrus [29] LOG logging for Golang d1e6332 Golang
Cobra [9] COB Golang CLI interactions 3a6873e Golang
Black [8] BAK Python code formatter 8dc9127 Python
Crawl4AI [30] C4AI LLM Friendly Web Crawler 8878b3d Python

Table 3: Comparative experiment results on line coverage

and valid rate.

Line Coverage Valid RateModel LspAi Naive LspAi Naive

CL
I GPT4o 57.04% 35.14% 56.52% 40.58%

GPT4o-mini 51.34% 13.30% 43.00% 17.87%
DS-V3 54.31% 28.72% 57.48% 44.93%

CS
V GPT4o 50.53% 35.62% 55.71% 31.43%

GPT4o-mini 42.25% 17.56% 38.57% 6.43%
DS-V3 68.26% 41.01% 43.57% 10.71%

LO
G GPT4o 42.17% 1.53% 30.00% 2.85%

GPT4o-mini 33.16% 4.76% 11.42% 3.57%
DS-V3 29.59% 8.50% 21.42% 14.28%

CO
B GPT4o 11.24% 1.23% 34.64% 5.23%

GPT4o-mini 10.72% 5.09% 16.99% 6.53%
DS-V3 14.05% 1.81% 41.17% 27.45%

BA
K GPT4o 47.49% 44.79% 55.00% 43.18%

GPT4o-mini 35.43% 33.89% 52.04% 59.54%

DS-V3 38.04% 37.29% 71.36% 67.27%

C4
A
I GPT4o 32.74% 32.72% 54.37% 49.33%

GPT4o-mini 37.36% 36.28% 52.78% 62.59%

DS-V3 40.70% 39.69% 67.90% 62.86%

Total 38.69% 23.20% 44.66% 30.92%

4.2 Comparative Experiment

This section evaluates the performance of LspAi using two metrics:
line coverage and valid rate, where a script is considered valid if
it can be executed without errors. Since there are no exist open-
sourced multi-language unit test generation tool, we constructed
the baseline with the same prompt template with LspAi, except
for the dependency information collected from LSP. We refer to
this baseline as Naive. As shown in Table 3, LspAi significantly im-
proves both line coverage and valid rate across three programming
languages, different projects, and various LLMs. We will look into
a more detailed analysis to find out what contributes to these re-
sults. Since there are slightly different trends in each programming
language, we will examine each language individually.
Java. On average, LspAi improves its baseline Naive by 114.39%
in line coverage and 181.78% in valid rate. The primary reason
for the increased coverage is the dependency retrieval-guided unit
test generation, which effectively utilizes summarized dependency
information of classes and methods to cover diverse edge cases. For
the valid rate, LspAi achieves substantial improvements by 181.78%



LSPAI: An IDE Plugin for LLM-Powered Multi-Language Unit Test Generation with Language Server Protocol Conference’17, July 2017, Washington, DC, USA

due to Java’s highly structured nature, which allows most errors
to be detected before compilation through LSP. This is particularly
evident in the substantial valid rate improvement observed in Java
projects (e.g., CLI and CSV) compared to Naive.
Golang. On average, LspAi enhances its baseline Naive by 850% in
line coverage and 483.6% in the valid rate. For Golang-specific tasks,
we found that LLMs often generate invalid unit test code due to
simple mistakes, which is reflected in the lowest valid rate of Naive
for Golang projects (e.g., LOG and CCOB). LspAi addresses this by
detecting and correcting these errors, leading to a significant im-
provement in the valid rate, which in turn boosts line coverage. For
instance, during experiments, we observed that LLMs frequently
"redeclare" objects that are already defined in the source code, caus-
ing invalid test code and resulting in low valid rates for the LOG and
CCOB projects (averaging 6.89% and 13.07%). By leveraging LSP,
LspAi can detect and resolve this issue, effectively mitigating the
limitations of LLMs. The rapid improvement in both line coverage
and valid rate demonstrates that LspAi can significantly enhance
the quality of generated test code, particularly for programming
languages where LLMs tend to struggle.
Python. For Python projects such as BAK andC4AI, LspAi achieved
an averaged modest increase in line coverage of 3.03%, and a in-
crease in the valid rate of 3.90% on average. These relatively low
improvements compared to other programming languages are at-
tributed to two factors. First, LLMs are proficient in Python, as
evidenced by Naive attaining the highest average valid rate of
68.5% compared to others. Second, Python’s dynamic nature makes
LspAi difficult to detect errors before code execution, preventing
LSP from identifying issues early and thereby degrading perfor-
mance. Consequently, LspAi decreased the valid rate for BAK and
C4AI projects, indicating that LSP-guided diagnosis may not fully
capture potential errors in Python tasks. Nonetheless, LspAi suc-
cessfully increased line coverage by generating unit tests in some
cases. This shows that collected dependency information by LspAi
generated effective unit tests that cover more edge cases, resulting
in more reliable test cases with higher coverage.

4.3 Breakdown of LspAi

To evaluate the practical applicability of LspAi in real-world use
cases, we measured its time and token consumption for unit test
generation. We put the averaged figure classified by programming
languages. The statistics were collected using a maximum of five
fixing attempts per focal method, with LspAi accessing an LLM via
API requests.

As shown in Table 4, LspAi takes approximately 51 seconds and
consumes 3,470 tokens on average to generate and refine unit tests.
For Golang projects, the utility of LspAi is particularly impressive,
as it requires an acceptable range of resources (46 seconds and 4,384
tokens on average) while delivering an 8× improvement in line cov-
erage. This demonstrates the efficiency and effectiveness of LspAi
in languages like Golang, where LLMs are less proficient, making
automated unit test generation particularly effective. In contrast,
LspAi is less ideal for Python projects. While time and token us-
age remains within acceptable ranges, the modest improvement
of approximately 6% in line coverage does not justify the resource
expenditure of 1 minute and approximately 2,000 tokens per focal

Table 4: Time and Token Usage by LspAi.

Time(milliseconds) Token
Retrieval Diagnosis GEN FIX GEN FIX

Python 34363 9910 15745 1111 1639 103
Java 13065 3761 13728 19339 1316 2966

Golang 7941 3607 12742 24456 1229 3155

Averaged 18457 5759 14072 14968 1395 2075

method unless additional performance improvements in test quality
can be ensured. This makes LspAi less practical for Python projects
compared to its strong performance in other languages. Overall,
LspAi demonstrates efficient and scalable performance across a
variety of programming languages, but it excels most in contexts
where LLMs traditionally underperform, such as with Golang. The
results highlight LspAi’s potential to bridge performance gaps in
automated unit test generation for less-supported languages while
maintaining acceptable resource usage for real-world applications.

5 Lessons Learned

In this section, we introduce some lessons learned during building
tool for multi-language unit test generation and applying the tool
to development environment in Tecent Ltd.
Alignment between Research and Industrial Needs. We iden-
tified a significant gap between academic research and industrial
requirements in the domain of unit test generation. While aca-
demic efforts predominantly aim for high code coverage, they often
overlook practical aspects essential for real-world usage. From
our industry practice, developers urgently need a lightweight tool
that can generate unit tests without whole-project compilation.
Additionally, academic research has largely focused on specific
programming languages such as Python and Java, leaving a gap in
support for other languages. For example, Golang is widely adopted
in many industries, yet few academic studies have addressed unit
test generation for Golang. LspAi was developed to bridge these
gaps. Although it may not achieve the same level of code coverage
as established academic tools like EvoSuite [10], LspAi is popular
among industrial developers.
Varying Language Proficiency of LLMs. Our experimental anal-
ysis revealed that LLMs exhibit varying levels of proficiency across
different programming languages, directly impacting the effective-
ness of LspAi. Specifically, LLMs frequently make errors when gen-
erating Golang code, which affects the quality of the generated unit
tests. These findings highlight the necessity for LLM-integrated
tools to adapt their strategies to the specific demands and com-
plexities of each programming language, thereby maximizing their
utility and effectiveness.
Demands for Better Integration Methods. This work opens
several promising avenues for future research in multi-language
unit test generation through the LSP. Currently, LspAi employs
prompt engineering, a low-cost but limited method for harnessing
the full potential of LLMs. A more sophisticated integration method
is needed to build a retrieval system that can fully exploit the ca-
pabilities of LLMs. Besides, the integration of additional language
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server functionalities, such as code intelligence and code action rec-
ommendations, could further enhance the accuracy and reliability
of generated unit tests. In our industrial practice, we found that
developers often require a more comprehensive approach to make
the generated unit tests more reliable and useful.

6 Conclusion

We introduced LspAi, a practical real-time unit test generation
tool that leverages LLMs and integrates static analysis through
the LSP to support multi-language codebases. LspAi addresses the
critical gap in existing research by enabling seamless unit test gen-
eration across diverse programming languages without the need
for project-wide compilation, thereby facilitating concurrent test
creation alongside code development. Implemented as an IDE plu-
gin, LspAi simplifies adoption for developers by requiring only the
installation of appropriate language analysis tools. Our comprehen-
sive evaluation of Java, Python, and Golang projects demonstrated
that LspAi consistently enhances both line coverage and valid rate
compared to baseline approaches.
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