
Towards More Complete Constraints for Deep Learning Library
Testing via Complementary Set Guided Refinement
Gwihwan Go

Tsinghua University
Beijing, China

iejw1914@gmail.com

Chijin Zhou∗
Tsinghua University

Beijing, China
tlock.chijin@gmail.com

Quan Zhang∗
Tsinghua University

Beijing, China
zhangq20@mails.tsinghua.edu.cn

Xiazijian Zou
Central South University

Changsha, China
zouxia19@gmail.com

Heyuan Shi
Central South University

Changsha, China
hey.shi@foxmail.com

Yu Jiang
Tsinghua University

Beijing, China
jiangyu198964@126.com

Abstract

Deep learning library is important in AI systems. Recently, many
works have been proposed to ensure its reliability. They oftenmodel
inputs of tensor operations as constraints to guide the generation of
test cases. However, these constraints may narrow the search space,
resulting in incomplete testing. This paper introduces a comple-
mentary set-guided refinement that can enhance the completeness
of constraints. The basic idea is to see if the complementary set of
constraints yields valid test cases. If so, the original constraint is
incomplete and needs refinement. Based on this idea, we design an
automatic constraint refinement tool, DeepConstr, which adopts a
genetic algorithm to refine constraints for better completeness. We
evaluated it on two DL libraries, PyTorch and TensorFlow. Deep-
Constr discovered 84 unknown bugs, out of which 72 confirmed,
with 51 fixed. Compared to state-of-the-art fuzzers, DeepConstr
increased coverage for 43.44% of operators supported by NNSmith,
and 59.16% of operators supported by NeuRI.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging; Constraints.

Keywords

Large Language Model, Fuzzing, DL library

ACM Reference Format:

Gwihwan Go, Chijin Zhou, Quan Zhang, Xiazijian Zou, Heyuan Shi, and Yu
Jiang. 2024. Towards More Complete Constraints for Deep Learning Library
Testing via Complementary Set Guided Refinement. In Proceedings of the
33rd ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3650212.3680364

∗Quan Zhang and Chijin Zhou are corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680364

1 Introduction

In a world reshaped by artificial intelligence, Deep Learning (DL)
libraries such as PyTorch [30] and TensorFlow [4] play an essen-
tial role in the development and deployment of machine learning
models. Therefore, the presence of bugs in these DL libraries can
have far-reaching implications. For example, a bug in a DL library
can cause incorrect decisions in a self-driving system, potentially
causing serious personal injury and substantial economic damage.
Consequently, there is an urgent and growing need to rigorously
test DL libraries to ensure their reliability.

To generate effective test cases, existing research efforts [10,
24, 25, 38, 42, 46] focus on inferring the input constraints for DL
operators and use the constraints to guide the generation of test
cases. These constraints describe the requirements that the input
arguments of an operator must satisfy to bypass the operator’s
input validity checks. For example, the MaxPool2d operator accepts
input tensor and operation configurations (e.g., kernel_size, . . .) as
arguments to calculate the output tensor, i.e.,

MaxPool2d(input, (kernel_size, padding, stride, . . .)) . (1)

These arguments are tightly constrained: the kernel size should
depend on the input shape and padding size, the stride should be
greater than zero, and the padding should not be less than zero. As
such, the constraint for this operator can be represented as

(kernel_size ≤ input_size + 2 × padding) ∧
(stride > 0) ∧ (padding ≥ 0). (2)

If a test case fails to meet this constraint, the operator will abort its
operation, thereby preventing effective testing. This is why many
techniques [10, 25, 38, 42, 46] have been proposed to automatically
infer such constraints for operators. Their focus is on pursuing
the soundness of the constraints. We call a constraint is sound only
when every derived test case from the constraint is valid for the
target operator.

Constraint Completeness. In contrast to soundness, which
can be directly evaluated through the responses of programs to
test cases, ensuring the completeness of constraints is difficult. Let
us consider a program that accepts an integer input within the
range (−∞, 10] and a fuzzer configured with an input constraint
of (−∞, 0). Although all the test cases generated by this fuzzer
are valid, they will never cover the range [0, 10]. In this case, the
fuzzer’s constraint is sound but incomplete, meaning that it is

https://orcid.org/0009-0001-0461-9674
https://orcid.org/0000-0002-6446-247X
https://orcid.org/0000-0001-7778-4243
https://orcid.org/0009-0001-3196-0587
https://orcid.org/0000-0002-9040-7247
https://orcid.org/0000-0003-0955-503X
https://doi.org/10.1145/3650212.3680364
https://doi.org/10.1145/3650212.3680364

ISSTA ’24, September 16–20, 2024, Vienna, Austria Gwihwan Go, Chijin Zhou, Quan Zhang, Xiazijian Zou, Heyuan Shi, and Yu Jiang

overly strict and fails to generate test cases that cover the entire
input space. Therefore, a constraint is considered complete if it can
yield all possible valid test cases for a given operator. DL libraries,
in contrast to simple programs, have more complex constraints that
are difficult to infer. Prior research [24, 25, 38, 46] has pioneered
the use of constraints-guided generation and reports success in
testing efficiency. However, although they have made significant
progress in ensuring the validity of test cases, they cannot ensure
the completeness of their constraints. The difficulty of ensuring
completeness arises from the need for an exhaustive understanding
of the valid input space. Without this, it becomes impossible to
identify areas of the input space that a constraint might have failed
to cover. For instance, previous research [25] infers the constraint
of the MaxPool2d as
(kernel_size < input_size) ∧ (stride > 0) ∧ (padding ≥ 0). (3)

All test cases generated based on the constraint (3) are indeed valid
for the MaxPool2d operator, as they also satisfy the constraint (2).
However, the constraint (3) fails to model the interrelation of
kernel_size between padding. As a result, they overlook valid test
cases where input_size ≤ kernel_size ≤ input_size + 2 × padding.
Without manually inspecting the operator, it is challenging to iden-
tify such overlooked areas of the input space. As a result, a large
portion of valid input space is unconsciously ignored by existing
techniques, leading to incomplete testing for DL libraries.

(a) Identify counter test cases. (b) Refine the constraint.

Figure 1: An illustrated example of our method. The red area

represents the valid input space of an operator, and the blue

area represents the search space of the constraint.

Method. This paper introduces Complementary Set Guided Re-
finement, an approach to enhance the completeness of constraints
for DL libraries. Figure 1 illustrates its basic idea. Suppose we have
a constraint 𝐶 for a DL operator, and 𝑇𝐶 is the set of test cases
generated based on 𝐶 . The basic idea behind our approach is to
identify the complementary set of 𝑇∁

𝐶
, and observe if there is a

counter test case 𝑡 ∈ 𝑇∁
𝐶

that is valid for the operator. If such a test
case exists, it indicates that the constraint 𝐶 is incomplete, thereby
pointing towards a potential direction for refining the constraint.
By gradually refining the constraint with 𝑡 ∈ 𝑇∁

𝐶
, we can achieve

a more complete constraint whose yielded test cases can cover a
wider range of the valid input space.

Challenge in Refinement. While the counter test case provides
a direction for refining the constraint of an operator, the refinement
process remains a significant challenge. The constraint of an opera-
tor often contains multiple sub-constraints. Consequently, once we

identify a counter test case, it becomes difficult to pinpoint which
sub-constraint is responsible for the incompleteness. Consider the
constraint (3) as an example, which includes three sub-constraints.
During the refinement process, we cannot directly determine which
sub-constraint is incomplete and needs refining. A counter test case
could potentially violate any of these sub-constraints, and thus, we
need to consider all of them as potential candidates to be refined.
However, in the case of constraint (3), only the first sub-constraint,
i.e., kernel_size < input_size, is incomplete and needs refining,
while the other two are complete. Therefore, a mechanism is re-
quired to identify the specific sub-constraint responsible for the
incompleteness of a given counter test case.

Solution. To address this challenge, we design DeepConstr, a
tool that leverages error messages to automatically refine the con-
straints of DL operators. Our key insight is that each sub-constraint
is coupled with a distinct error message. This allows us to divide the
input constraint of a given operator into several smaller, indepen-
dent sub-constraints based on these error messages. Therefore, we
can focus solely on refining the specific sub-constraint that corre-
sponds to a particular error message at a time, thereby avoiding the
potential interference from other sub-constraints. The refinement
of each sub-constraint employs a genetic algorithm. Specifically, we
maintain a set of high-quality constraints and generate new ones in
each iteration. We then assess the soundness and completeness of
them based on the test cases derived from them, and prune the set
by removing less-quality constraints. This iterative process ensures
the constraint is gradually refined towards a more complete state.

Evaluation. We evaluated DeepConstr’s performance on the
two mainstream DL libraries, namely, PyTorch and TensorFlow.
DeepConstr discovered 84 previously unknown bugs, out of which
72 were confirmed, and 51 were fixed. Most of the bugs reside in
operators that were heavily tested by existing fuzzers [24, 25, 46].
Compared to the state-of-the-art fuzzers, DeepConstr has demon-
strated significant enhancements in terms of branch coverage for
every single operator. Specifically, it achieves greater coverage on
58.27% of operators supported by NeuRI, and 49.15% of opera-
tors supported by NNSmith in PyTorch and 62.1% of operators
supported by NeuRI, and 38.1% of operators supported by NN-
Smith in TensorFlow. In summary, this paper makes the following
contributions:

• We identify the problem of current constraint-guided testing
in DL library testing: insufficient consideration of constraint
completeness. To address this, we propose a complementary set
based refinement approach to resolve the problem by enhancing
the completeness of constraints.
• We design DeepConstr, a practical tool that generates more
complete constraints for DL operators. This tool is available at
https://github.com/THU-WingTecher/DeepConstr
• We evaluate DeepConstr on PyTorch and TensorFlow. In total,
it uncovers 84 previously-unknown bugs with 72 confirmed and
11 with received high-priority, out of which 51 has been fixed.
DeepConstr achieves greater coverage of 58.27% of operators
supported by NeuRI and 49.15% of operators supported by NN-
Smith in PyTorch, and 62.1% of operators supported by NeuRI
and 38.1% of operators supported by NNSmith in TensorFlow.

https://github.com/THU-WingTecher/DeepConstr

Towards More Complete Constraints for Deep Learning Library Testing via Complementary Set Guided Refinement ISSTA ’24, September 16–20, 2024, Vienna, Austria

2 Background and motivation

2.1 DL Library and Constraint

DL libraries are crucial components in most of DL applications.
DL applications usually employ complicated and costable numeric
calculations such as convolutional operations and matrix multipli-
cations. These operations are highly influenced by the way they are
implemented. DL libraries incorporate DL operators that implement
these complex operations in the most optimized manner [4, 30, 37],
saving users’ efforts in implementing these operations. However, as
a trade-off for the optimized implementation, DL libraries restrict
the range of accepted inputs, which makes it difficult for fuzzers to
generate valid test cases for DL libraries. Existing research [25, 38]
has shown that modeling constraints of DL libraries is effective for
generating valid test cases.

The constraints of DL libraries indicate the specific requirements
for generating valid test cases. If these requirements are not ful-
filled, the DL operator will not initiate its operation. Suppose that
𝑆𝑘 = [𝑠𝑘0 , 𝑠

𝑘
1 , . . . , 𝑠

𝑘
𝑟𝑘−1] describes the shape of the tensor 𝐼𝑘 , in

which 𝑠𝑖 corresponds the 𝑖-th dimension value of 𝐼𝑘 with the rank
of 𝑟𝑘 . There are three kinds of constraints that are usually seen in
DL libraries. First, a constraint that requests a single input tensor
𝐼𝑘 to satisfy, such as ∀𝑠𝑘

𝑖
, 𝑠𝑘
𝑗
∈ 𝑆𝑘 , 𝑖 ≠ 𝑗 =⇒ 𝑠𝑘

𝑖
≠ 𝑠𝑘

𝑗
. Second, a

constraint that specifies an input tensor 𝐼𝑘 and the operator con-
figuration 𝐴 = [𝑎1, 𝑎2, . . . , 𝑎𝑚] to be satisfied. For example, many
dimension expansion operators requires that ∀𝑎𝑖 ∈ 𝐴, 𝑠𝑘𝑎𝑖 = 1,
where 𝐴 includes the dimensions referred to be expended. Third,
a constraint that multiple input tensors 𝐼𝑘 , 𝐼 𝑗 should satisfy. For
example, in matrix multiplication operators, the last dimension of
one input tensor 𝐼𝑘 should be the same as the first dimension of
the other input tensor 𝐼 𝑗 , which means 𝑠𝑘

𝑟𝑘−1 = 𝑠
𝑗

0
This complexity arises from the high-dimensional computations

performed, as opposed to those in conventional software. In conse-
quence, randomly generating inputs will seldom pass the internal
checks of DL operators [25, 38, 46]. It emphasizes the need for a
constraint-guided approach to generate valid test cases.

2.2 Motivation

Overly-strict constraints often lead to insufficient diversity in gener-
ated test cases, making fuzzers impossible to completely explore the
semantics state of target program. Previous studies [24, 25, 38, 46]
have deduced constraints of DL libraries and generated test cases
derived from these constraints. However, they cannot ensure the
completeness of the constraints they’ve inferred. This may cause
them to miss potential vulnerabilities of DL libraries. Listing 1 is
an inconsistency bug that DeepConstr has found on PyTorch1.
The developers regarded this bug as important and assigned it a
high-priority tag, which led it to be fixed very quickly. An operator
torch.diag_embed is used to embed a tensor into a diagonal ma-
trix. This operator can be invoked with 4 arguments, input tensor
x, and three integers dim1, dim2, and offset. The bug is triggered
when torch.diag_embed(x, dim1, dim2, offset) is invoked
with negative value assigned to the argument dim1, while the posi-
tive value passed to the argument dim2. To find out this bug, a test

1https://github.com/pytorch/pytorch/issues/117019

import torch
class Model(torch.nn.Module):

def forward(self, x):
return torch.diag_embed(x, dim1=-1,dim2=1,offset=1)

model = Model()
x = torch.rand([2, 2, 2]) ## Randomly generate tensor
eag = model(x)
opt = torch.compile(model.forward)(x)
torch.allclose(eag, opt) # Different results => bug

Listing 1: Minimized code snippet of inconsistency bug.

case should be valid first, which needs to satisfy a constraint, which
includes a series of sub-constraints. First, the rank of input tensor
x should be at least 1. Second, the diagonal dimensions cannot be
identical, which means dim1 should not be equal to dim2. Third,
the dim1 and dim2 should be within the range of [−x.rank, x.rank).
As such, the actual constraint for torch.diag_embed would be:

(dim1 ≠ dim2) ∧ (−x.rank ≤ dim1, dim2 < x.rank) ∧ (x.rank ≥ 1)

However, without considering completeness, prior research [25]
extracts the the constraints of torch.diag_embed as below:

dim1 ∈ {−2, 0, 1} ∧ (dim2 = dim1 + 1) ∧ (x.rank ≥ 2)

Although the test cases derived from the above constraint are
valid, the constraint is actually interrupting the testing. Specifically,
within the constraints provided, the feasible candidates for the
values of dim1 and dim2 are limited: (1). 𝑑𝑖𝑚1 = −2, 𝑑𝑖𝑚2 = −1, (2).
𝑑𝑖𝑚1 = 0, 𝑑𝑖𝑚2 = 1, and (3). 𝑑𝑖𝑚1 = 1, 𝑑𝑖𝑚2 = 2. This limits the
fuzzer from finding bugs triggered by a negative value in dim1with
a positive value in dim2.

Generating complete constraints is challenging. Unlike sound-
ness, which can be directly assessed through programs’ responses
to test cases, completeness is difficult to measure because it is impos-
sible to identify the input space that a constraint may have missed
without understanding the program’s internal logic. A previous
work [38] has noted the importance of completeness of constraint
they have inferred. In the absence of alternative methods, they
evaluate the completeness of the constraints by manually analyz-
ing the source code of the DL operators. However, this approach
is labor-intensive and can only be performed on a small subset
of operators, making it unsuitable for an automatic fuzzer. This
highlights a critical challenge in constraint refinement: How can
we automatically measure the completeness of constraints and refine
them to be more complete?

3 Complementary Set Guided Refinement

To address the above challenge, we propose a method called Com-
plementary Set Guided Refinement. Our method is twofold. First, we
divide the complex constraint of an operator into several indepen-
dent and relatively simple constraints using error messages. Next,
we leverage the complementary set of each independent constraint
to identify the incomplete areas of this constraint and thus refine it
to be more complete.

Formally, let 𝑆 be a DL library, which includes a set of DL op-
erators {𝑂1,𝑂2, . . .} ∈ 𝑆 . In a system 𝑆 , a DL operator 𝑂 contains
a set of error messages 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑛} that consists of 𝑛 mes-
sages. Once a test case violates the constraint of 𝑂 , it will trigger

ISSTA ’24, September 16–20, 2024, Vienna, Austria Gwihwan Go, Chijin Zhou, Quan Zhang, Xiazijian Zou, Heyuan Shi, and Yu Jiang

an error message 𝑒𝑖 . Therefore, we can divide the constraint of
𝑂 into a set of independent constraints, denoted as constraint set
𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, each of which is designed to resolve a specific
error message 𝑒𝑖 . Based on this, we can independently refine each
constraint 𝑐𝑖 for better completeness, and subsequently combine
them to form a complete constraint for operator 𝑂 .

To refine a constraint 𝑐𝑖 , we use complementary set to identify
its incomplete areas, i.e., measuring its completeness. Suppose 𝑇𝑐𝑖
is a set consisting of all the test cases that are generated under the
guidance of 𝑐𝑖 . Obviously,𝑇𝑐𝑖 is a subset of the universal input space
𝑈 for operator 𝑂 , satisfying that ∀𝑡 ∈ 𝑈 , if 𝑡 satisfies 𝑐𝑖 , then 𝑡 ∈
𝑇𝑐𝑖 . Let us consider 𝑇𝑐𝑖 ’s complementary set:

𝑇
∁
𝑐𝑖 = 𝑈 −𝑇𝑐𝑖 .

This set enables us to identify test cases that can resolve the target
error 𝑒𝑖 but outside 𝑇𝑐𝑖 . Specifically, we can generate a counter test
case 𝑡 ∈ 𝑇∁𝑐𝑖 that violates 𝑐𝑖 and inspect whether it resolves error 𝑒𝑖
or not. If 𝑂 does not return error 𝑒𝑖 with 𝑡 ∈ 𝑇∁𝑐𝑖 , it indicates 𝑐𝑖 is
not complete, because there exists a counter test case 𝑡 not satisfies
𝑐𝑖 but resolves 𝑒𝑖 . As such, we can measure the completeness of 𝑐𝑖
by traversing 𝑇∁𝑐𝑖 and minimizing the counter test cases, thereby
gradually improving the constraint 𝑐𝑖 to make it more complete.

A counter test case only provides information about the incom-
pleteness of a constraint, but how to refine the constraint is still
an unsolved problem. To address this, we design a systematic con-
straint refinement approach. It iteratively refines each constraint
by measuring its completeness based on the complementary set. As
a result, by refining every constraint 𝑐𝑖 in 𝐶 , we can form a more
complete constraint for operator 𝑂 . We will provide further details
in the next section.

4 Approach

In this section, we detail the design of DeepConstr, an automated
constraint refinement tool based on the idea of complementary set
guided refinement. Our final goal is to generate a constraint set
𝐶 = {𝑐1, 𝑐2, 𝑐3, . . .} for operator 𝑂 . We adopt a divide and conquer
approach to generate a constraint set 𝐶 , wherein we generate and
refine each constraint 𝑐𝑖 based on the corresponding error message
𝑒𝑖 . As illustrated in Figure 2, our approach for refining each 𝑐𝑖
follows an iterative approach. Inspired by genetic algorithm [19], we
maintain a high-quality constraint pool during the whole iteration,
from which we select the final constraint 𝑐𝑖 . Our design for refining
𝑐𝑖 follows below steps : (1), a raw constraint exploration module
that identifies a raw constraint from the given error message; and
(2), a constraint synthesis module that enhances the quality of
constraint through synthesis with the constraint pool; and (3) a
constraint measurement module that assesses the constraint and
updates the constraint pool; and go back to (1) to continue refining
the constraint pool, or break the iteration if a complete constraint
has been found. After the constraint set 𝐶 of the operator 𝑂 is
constructed, it will be passed into the fuzzer to effectively generate
test cases.

Raw Constraint
Exploration

Constraint
Synthesis

Constraint
Measurement

DL Operator

Constraint Set

{Constraint 1, , Constraint }

Constraint Refinement

Error
Message

Constraint

Error Message 1Error Message 1Error Message 1
(§4.1)

(§4.2) (§4.3)

Figure 2: Overview of a constraint refinement process.

4.1 Raw Constraint Exploration

This module aims to generate a raw constraint that can model
potential constraints inherent in the DL operator based on an error
message. In this section, we first present the grammar designed
to effectively model the constraint of the DL operator, and then
describe how this constraint is generated from the error message.

Grammar Definition. To model complex constraints inher-
ent in the DL operator, a comprehensive grammar definition is
needed. Figure 3 illustrates the grammar definition that DeepCon-
str supports. The grammar is designed to model all potential input
constraints. Therefore, it includes common operations that can be
performed on the inputs, such as obtaining inputs’ ranks (<rank>)
and finding the maximal values (<max>). For example, when the
constraint that specified the maximum value of given dimension
values dims should fall in the range of input tensor x, this constraint
can be modeled as −𝑥 .𝑟𝑎𝑛𝑘 ≤ 𝑚𝑎𝑥 (𝑑𝑖𝑚𝑠) < 𝑥 .𝑟𝑎𝑛𝑘 . In addition,
to effectively model complex constraints such as broadcasting, the
grammar incorporates quantifier expressions (<quan_op>) such as
<for_all> or <for_any>. This is necessary because constraints such
as broadcasting require that every dimensional value of the tensor
size satisfies certain conditions (assuming the two tensors have the
same rank).

Figure 3: The grammar definition of constraint.

Error Message. DeepConstr generates a raw constraint from
the description of the error message. This error message comes
from invalid test cases. For example, assume that we execute the
MaxPool2d operator with the values that violate the constraint,
𝑘𝑖 <= 𝐼𝑖 + 2 × 𝑝𝑎𝑑 . In this case, MaxPool2d will innerly check the
given values first and return the error message, stating "kernel
size should be at most two times of padding". We save
this error message with the test case that triggers it and use it to
generate a raw constraint.

Distillate Semantic Information.We utilize LLMs to infer a
raw constraint from an error message that would not re-trigger
the given error. Specifically, we leveraged the few-shot Chain of
Thought (CoT) prompting technique [43] as illustrated in Figure 4.

Towards More Complete Constraints for Deep Learning Library Testing via Complementary Set Guided Refinement ISSTA ’24, September 16–20, 2024, Vienna, Austria

Few-shot CoT prompting involves presenting LLMs with a small set
of examples that demonstrate a step-by-step approach to problem-
solving, guiding the model to follow a logical sequence of thoughts.
We built a set of examples that step-by-step infer constraints from
error messages. It helps LLMs to identify the root cause, retrieve the
runtime information, and subsequently conclude the requirements
of constraints. By following the guidance, LLMs would output a
constraint, which we call a raw constraint, because it is usually
incorrect. DeepConstr takes this raw constraint and moves to the
next step. In subsequent steps, this raw constraint will be refined
through iterative synthesis and measurement.

Task Description
You developed the function {function_name}, and know everything about it. Infer the root cause of given error messages with its
runtime information, and then formulate the condition that make the error disappear. Think step-by-step as below examples.

Chain of Thought Examples
Question : Based on the given runtime information(input : Tensor[shape=[1,2], dtype=float32], kernal_size=5,
padding=2), formulate constraints that prevent this error -> kernel size should be at most 2 times of padding
Chain of Thought : The error occurs because the kernel size exceeds twice the size of the padding. What the arguments
were? kernel size of 5 and padding of 2, which are incompatible. To avoid this error, kernel size must be less than or equal
to twice the padding size.
Left : kernel_size, Op : <=, Comparators : 2 * padding
Answer : ```kernel_size < = 2 * padding```

Based on the given runtime information({Runtime information}), formulate constraints that prevent this error =>
{target error message} \nAnswers :

Question

Figure 4: The prompt template used by DeepConstr.

4.2 Constraint Synthesis

The constraint synthesis module aims to enhance the quality of
constraints. This module is crucial because the raw constraint gen-
erated by LLMs may be neither sound nor complete. The synthesis
is conducted by combining the newly generated raw constraint
with high-quality constraints extracted from the constraint pool
that DeepConstr maintains.

Algorithm 1: Constraint Synthesis
Input :Newly inferred raw constraint 𝑟𝑎𝑤 ,

High quality constraints 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑃𝑜𝑜𝑙 ,
Sound constraint 𝑆𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑟 ,
Complete constraint 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐶𝑜𝑛𝑠𝑡𝑟

Output :A synthesized constraint set 𝐸𝑣𝑎𝑙𝑆𝑒𝑡
1 Function NeedSynthesis(𝑝 , 𝑞):

// if either 𝑝 or 𝑞 is the super-set of the other, then return false

2 return not (𝑝 ⊇ 𝑞 or 𝑞 ⊇ 𝑝)
3 𝐸𝑣𝑎𝑙𝑆𝑒𝑡 ← {𝑟𝑎𝑤}
4 for 𝑐𝑜𝑛𝑠𝑡𝑟 in 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑃𝑜𝑜𝑙 do

5 if NeedSynthesis(𝑠𝑜𝑢𝑛𝑑 , 𝑟𝑎𝑤) then
6 𝑟𝑎𝑤 ← 𝑟𝑎𝑤 ∨ 𝑠𝑜𝑢𝑛𝑑
7 end

8 if NeedSynthesis(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , 𝑟𝑎𝑤) then
9 𝑟𝑎𝑤 ← 𝑟𝑎𝑤 ∧ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

10 end

11 if NeedSynthesis(𝑟𝑎𝑤 , 𝑐𝑜𝑛𝑠𝑡𝑟) then
12 𝐸𝑣𝑎𝑙𝑆𝑒𝑡 ∪ {𝑐𝑜𝑛𝑠𝑡𝑟 ∨ 𝑟𝑎𝑤, 𝑐𝑜𝑛𝑠𝑡𝑟 ∧ 𝑟𝑎𝑤}
13 end

14 end

15 return 𝐸𝑣𝑎𝑙𝑆𝑒𝑡

The synthesis of two constraints is conducted by connecting
two different constraints with boolean operators, OR(∨) and AND(∧).
As described in Algorithm 1, the synthesis consists of two steps,
targeted synthesis (lines 5-10) and naive synthesis (lines 11-13).
Before proceeding with any synthesis, DeepConstr first inspects
the relationship between two constraints (lines 1-3). Specifically,
if one constraint is a super-set of the other, the synthesis process
is skipped. This is because synthesizing them with any boolean
operator would yield a meaning identical to that of the constraints
participating in the synthesis.

The targeted synthesis is conducted on the specific con-
straint, which has already been proven sound(𝑆𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑟) or
complete(𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐶𝑜𝑛𝑠𝑡𝑟). DeepConstr synthesizes raw con-
straint(refered as 𝑟𝑎𝑤) with thoes constraints using a specific
boolean operator. This step aims to guide either sound or complete
constraints toward a logically meaningful direction. In specific, syn-
thesizing 𝑠𝑜𝑢𝑛𝑑 constraint with raw constraint using OR(∨) will
increase the completeness of an already 𝑠𝑜𝑢𝑛𝑑 constraint. Similarly,
merging a 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 constraint with the AND(∧) operator can im-
prove the soundness of an already 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 constraint. On the other
hand, naive synthesis is conducted with both boolean operators.
The following examples demonstrate the concrete process of naive
synthesis. Suppose that LLMs generate a raw constraint x.rank >
1, while the ground truth is x.rank > 1 and x.rank < 4. The
constraint x.rank > 1 is partially correct because it includes both
ground truth and the incorrect range (x.rank ≥ 4). Therefore,
DeepConstr saves this constraint to the constraint pool and contin-
ues refinement. On another iteration, LLMs will generate another
partially correct constraint, x.rank < 4. This new constraint will
be combined with x.rank > 1 (lines 11-13), resulting in x.rank >
1 and x.rank < 4 as one of the outputs. This synthesized con-
straint will score full marks in the fitness function (equation 8) and
be selected. In this way, DeepConstr can mitigate the limitation
of LLMs that often fail to generate complete constraints.

4.3 Constraint Measurment

The constraint pool is refined based on the result of constraint mea-
surement. This follows the idea of genetic algorithm [19], updating
the constraint pool with higher-scoring constraints. This module
calculates the scores by defining fitness function, which is designed
to consider both soundness and completeness of constraint. The
soundness of constraint is measured by examining whether the
test case derived from the constraint triggers a error change on DL
operator. Completeness is measured by finding counter test cases
from a complementary set of constraints.

Error Change. For a DL operator 𝑂 , let there be a set of 𝑛 error
messages 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}. To address this, we generate a set of
constraints𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, where each constraint 𝑐𝑘 is tailored
to resolve the corresponding error message 𝑒𝑘 . 𝑇𝑘 represents the
collection of all test cases 𝑡 that satisfies constraint 𝑐𝑘 , denoted as
𝑡𝑘 ⊨ 𝑐𝑘 . Thus, 𝑇𝑘 is defined as

𝑇𝑘 = {𝑡𝑖 | 𝑡𝑖 ⊨ 𝑐𝑘 , 𝑖 = 1, 2, . . . ,𝑚}
Since the test case 𝑡𝑘 satisfies the constraint 𝑐𝑘 , the operator𝑂 with
𝑡𝑘 will not trigger the error message 𝑒𝑘 . This indicates that the
error state has undergone a change, which means 𝑐𝑘 is effective at
resolving the error message. Similarly, We assess the quality of a

ISSTA ’24, September 16–20, 2024, Vienna, Austria Gwihwan Go, Chijin Zhou, Quan Zhang, Xiazijian Zou, Heyuan Shi, and Yu Jiang

constraint 𝑐𝑘 by watching whether 𝑐𝑘 has triggered error_change
on 𝑂 . Formally, we define error_change as below:

Definition 4.1 (Error Change). For an operator 𝑂 with input
𝑡𝑘 , the error_change for error 𝑒𝑘 is defined as

error_change(𝑂, 𝑡𝑘 , 𝑒𝑘) =
{
1 when 𝑂 does not return the error 𝑒𝑘
0 when 𝑂 still returns the same error 𝑒𝑘

We consider that the operator𝑂 has experienced an error_change
if 𝑂 with 𝑡𝑘 returns a different error message compared to 𝑒𝑘 , or it
does not report any error at all.

Soundness. The soundness of constraint 𝑐𝑘 implies whether
the constraint 𝑐𝑘 always resolves the target error state 𝑒𝑘 . We en-
sure the soundness of 𝑐𝑘 , proposed to resolve 𝑒𝑘 , by inspecting the
error_change on 𝑒𝑘 with 𝑡𝑘 ⊨ 𝑐𝑘 . Hence, soundness(𝑐𝑘) is :

Definition 4.2 (Soundness). soundness(𝑐𝑘) is true,

if ∀𝑡 ∈ 𝑇𝑘 , error_change(𝑂, 𝑡, 𝑒𝑘) returns 1 (4)

Completeness. Completeness of constraint indicates the con-
straint 𝑐𝑘 does not influence the input space unrelated to resolving
𝑒𝑘 . Our insight is that we can assess completeness of 𝑐𝑘 by utilizing
complementary set constructed by the negation of the constraint.
That is, We ensure the completeness by inspecting whether the
correct input space is still covered by the ¬𝑐𝑘 . We formulate it as
follows:

Definition 4.3 (Completeness). completeness(𝑐𝑘) is true,

if ∀𝑡 ∈ 𝑇∁
𝑘
, error_change(𝑂, 𝑡, 𝑒𝑘) returns 0 (5)

Note that 𝑇∁
𝑘

is the complementary set of test case set 𝑇𝑘 . Thus,

𝑇
∁
𝑘

consists of test case 𝑡 that does not satisfy 𝑐𝑘 , which means that

𝑡 ⊨ ¬𝑐𝑘 . We consider 𝑐𝑘 is complete when every element 𝑡𝑘 ∈ 𝑇∁𝑘
do not trigger error_change.

Fitness Function. Since computational resources are limited,
it is infeasible to explore the whole input space. Therefore, we
measure the approximate values of completeness and soundness on
constraint 𝑐𝑘 by investigating the set 𝑇𝑘 , which contains a consid-
erably large number 𝑛 of test cases. We introduce equations for

ˆ𝑠𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 and ˆ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 to compute these approximate values.
First, we estimate the approximate value of soundness(𝑐𝑘) using

the following equation. The equation measures the proportion of
elements in𝑇𝑘 = {𝑡𝑘1 , 𝑡

𝑘
2 , ..., 𝑡

𝑘
𝑛 } that actually triggered error_change.

ˆsoundness(𝑐𝑘) =
1
𝑛

𝑛∑︁
𝑖=1

error_change(𝑂, 𝑡𝑘𝑖 , 𝑒𝑘) (6)

Next, we define the equation that approximately measures the
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 (𝑐𝑘). The Φ is the proportion of element in 𝑇

∁
𝑘

=

{𝜏𝑘1 , 𝜏
𝑘
2 , ..., 𝜏

𝑘
𝑛 } that still triggers error_change. Φ can be defined as:

Φ =
1
𝑛

𝑛∑︁
𝑖=1

error_change(𝑂, 𝜏𝑘𝑖 , 𝑒𝑘)

The ˆcompleteness(𝑐𝑘) score reflects the input space that is wrongly
excluded by 𝑐𝑘 , which is measured by Φ. Inspired by the recall

metrics [40], we define the ˆcompleteness(𝑐𝑘) as follows:

ˆcompleteness(𝑐𝑘) =
ˆsoundness(𝑐𝑘)

ˆsoundness(𝑐𝑘) + Φ
(7)

On the top of the definitions of ˆcompleteness with ˆsoundness, we
measure the overall quality of constraint 𝑐𝑘 by defining a fitness
function through the harmonic mean [40] of the two metrics.

fitness(𝑐𝑘) = 2 ×
ˆsoundness(𝑐𝑘) × ˆcompleteness(𝑐𝑘)
ˆsoundness(𝑐𝑘) + ˆcompleteness(𝑐𝑘)

(8)

Refinement. Based on the fitness score, DeepConstr maintains
a high-quality constraint pool, keeping the top-k constraints and
pruning others. Specifically, DeepConstr updates the constraint
pool if it finds a constraint with a higher score than the lowest
score in the constraint pool. The constraint pool is then used for
the constraint synthesis of the next iteration.

End of Iteration. There are two conditions that stop the itera-
tion of constraint refinement. First, if we have found the constraint
𝑐𝑘 that achieves a full mark on the fitness function, we stop the
process as it indicates we have found the perfect constraint. Second,
when the number of iterations exceeds a pre-set threshold, we stop
refining and return the best constraint from the constraint pool.

5 Implementation

We implemented DeepConstr with approximately 4k lines of
Python codes. For raw constraint exploration, we utilized GPT-
3.5-turbo [12] and GPT-4 [5]. Based on the grammar definition of
DeepConstr, the raw constraint is converted into the correspond-
ing expression of Z3-solver [7], one of the Satisfiability Modulo
Theories Solvers. In this way, DeepConstr is able to synthesize con-
straints and derives test cases from the constraint set utilizing the
native support of Z3-solver. For the constraint synthesis module, we
retain the top-5 constraints for naive synthesis and top-1 constraint
for targeted synthesis, to balance the diversity of the pool and save
computational resources. For the constraint refinement module,
considering the difference in searching space between soundness
and completeness evaluation, we generated 1.5 times more test
cases on completeness than we did for soundness when assessment.
Specifically, we set 𝑛 to 500 for ˆsoundness (equation 6), and 750 for
measuring ˆcompleteness (equation 7). When updating the constraint
pool, we also considered the length of each synthesized constraint
to prevent them from becoming overly long.

Test Case Generation. For efficient test case generation for DL
library testing, DeepConstr reused an existing DL library fuzzer,
NNSmith [24]. To achieve this, we made the extracted constraints
compatible with NNSmith, wrapped the DL operator with them,
and then passed the sets of DL operators to the fuzzer.

Oracle. We adopt the bug detection oracles that are in line with
previous studies [24, 25, 38, 46]. It involves two types of oracles:
differential testing and crash detection. For differential testing, we
generate a test case and lower it to be compiled with different com-
pilers, and then compare the outputs to check if they are identical.
Given that DL operators handle complex numerical operations, nu-
merical stability is a critical factor in differential testing, which is
also mentioned by [45]. To reduce the incidence of false positives,
we set the tolerance threshold as 1e-2.

Towards More Complete Constraints for Deep Learning Library Testing via Complementary Set Guided Refinement ISSTA ’24, September 16–20, 2024, Vienna, Austria

6 Evaluation

We evaluate DeepConstr by answering the following three re-
search questions:

• RQ1 (§6.1): How well does DeepConstr perform compared to
other state-of-the-art fuzzers?
• RQ2 (§6.2): What are the soundness and completeness of the
constraints refined by DeepConstr?
• RQ3 (§6.3): Can DeepConstr detect previously unknown bugs
for real-world DL libraries?

Experiment Setup.We tested the twomost popular DL libraries,
i.e., TensorFlow [4] and PyTorch [30], with each library supporting
approximately over 1,500 operators. We perform our evaluation on
an AMD EPYC 7763 with 128 cores running on Ubuntu 20.04. All
experiments are conducted in the same environment and repeated
five times. As aligned with previous research [25], we compiled Ten-
sorFlow with GCC-12.2 and GCOV [1], while PyTorch is compiled
with Clang-14 [2].

6.1 Comparative Study

To further investigate the effectiveness of our approach, we evaluate
DeepConstr with state-of-the-art DL library fuzzers and a variant
of DeepConstr.

• NNSmith [24]: A fuzzer that performs test case generation with
approximately 60 DL operators whose constraints are manually
crafted by domain experts.
• NeuRI [25]: A fuzzer that automatically infers the constraints
of a DL operator through real-world invocations of the operator,
which are collected from various sources, such as developer tests.
• DeepConstr− : A variant of DeepConstr, which removes the
completeness objective from the fitness function in the constraint
refinement process, and only considers the soundness.

Supported Operators. Table 1 presents an overview of the
number of operators supported by different tools. For PyTorch,
DeepConstr additionally supports 220 and 784 operators that
are not supported by NeuRI and NNSmith, respectively. For Ten-
sorFlow, DeepConstr supports 68 and 195 operators that are
not supported by NeuRI and NNSmith, respectively. This is be-
cause DeepConstr adopts a black-box based approach that does
not require manual efforts or external test cases. NNSmith requires
human experts’ efforts, and thus cannot scale to support a large
number of operators. NeuRI, on the other hand, supports a broader
range of DL operators based on collected test cases, but the ab-
sence of test cases for some operators limits its ability to support
additional operators.

DeepConstr does not support 99 and 84 operators that are sup-
ported by NeuRI in PyTorch and TensorFlow, respectively. There
are two factors contributing to this: (1) element-wise constraints
and overly complicated constraints, and (2) incorrect error mes-
sages. DeepConstr avoids modeling each tensor element into the
constraint because doing so would require excessive computational
resources when deriving test cases. This approach aligns with pre-
vious works [24, 38, 46]. Consequently, DeepConstr cannot ex-
tract constraints from error messages such as "number of elements
should be less than n" or "the max value of tensor element should be

bigger than 0". Additionally, DeepConstr cannot extract valid con-
straints for some operators with overly complicated constraints. For
example, an operator(torch.nn.AdaptiveLogSoftmaxWithLoss)
requires its arguments to be an ordered sequence of integers sorted
in increasing order. DeepConstr fails to generate valid constraints
for such cases. However, NeuRI does not get affected by this issue
because it reuses saved test cases when fuzzing if it fails to extract
constraints. This limitation prevents DeepConstr from supporting
some operators supported by NeuRI.

In addition to this, there are wrong or unclear error messages,
which makes it difficult for DeepConstr to refine constraints. Some
of these error messages are wrongly implemented, for example,
an error message2 "Padding length too large," returned by the
torch.nn.ConstantPad operator wrongly describes the root cause
of the error. For this case, DeepConstr was unable to generate a
constraint that resolves the error. This was because the actual issue
was not with the padding value but with the input dimension. This
issue with the error message has been fixed to "Input dimension
should be at least 3 but got 2," accurately reflecting the underlying
problem. For those operators where error messages are correct and
precise, DeepConstr is able to support them effectively.

Table 1: The number of DL operators supported by different

tools. ‘D’ denotes DeepConstr, ‘R’ represents NeuRI, and ‘N’

refers to NNSmith. ‘PT’ and ‘TF’ are PyTorch and Tensorflow,

respectively.

Library 𝐷 𝑅 𝑁
𝐷vs 𝑅 𝐷vs 𝑁

𝐷 ∩ 𝑅 𝐷 − 𝑅 𝑅 − 𝐷 𝐷 ∩ 𝑁 𝐷 − 𝑁 𝑁 − 𝐷

PT 843 722 59 623 220 99 59 784 0
TF 258 274 63 190 68 84 63 195 0

Testing Effectiveness. In this section, to evaluate the effect on
testing that comes from the constraints refined by DeepConstr,
we compare its testing effectiveness with NNSmith, NeuRI, and
DeepConstr− . Specifically, we examine two crucial metrics that are
considered significant in testing: branch coverage and the number
of test cases. In our experimental setup, we collect branch cover-
age after each tool executes a single operator for 15 minutes. We
then repeat this until we have completed testing for all supported
operators. The detailed explanation of metrics is:
• Branch coverage per operator: We evaluate each baseline based
on the branch coverage it achieves. The better branch coverage
indicates that the tool provides better constraints for test case
generation. Notably, when comparing each of the two tools, we
only include their intersection of supported operators for fair
comparison. This is because the broad range of operator support
by DeepConstr will interrupt fair comparison. As such, we did
not assess the overall coverage, which includes all supported
operators at once, because it is significantly influenced by the
number of operators supported.
• The number of test cases: We assess the efficiency of baselines by
counting the number of successful test cases generated within the
same time period, which directly reflects the fuzzer’s efficiency.

2https://github.com/pytorch/pytorch/issues/104508

ISSTA ’24, September 16–20, 2024, Vienna, Austria Gwihwan Go, Chijin Zhou, Quan Zhang, Xiazijian Zou, Heyuan Shi, and Yu Jiang

Table 2: Comparative experiment results on branch coverage

and the number of test case.

Library Tool #Testcase #Operators Improved %Cov Improved

Py
To

rc
h DeepConstr 1954.61 - -

NNSmith 14626.52 29/59 (49.15%) 39.00%
NeuRI 123.31 363/623 (58.27%) 25.94%

DeepConstr− 2660.60 360/843 (42.7%) 1.25%

Te
ns
or
Fl
ow DeepConstr 1292.93 - -

NNSmith 3674.80 24/63 (38.1%) -4.17%
NeuRI 138.11 118/190 (62.1%) 27.26%

DeepConstr− 1459.21 109/258 (42.25%) 6.41%

Table 2 is the experimental result that compares the effectiveness
of test case generation with a single operator. “#Testcase” column
means the average number of successful test case generations of
the same time period, 15 minutes. “#Operators Improved” indicates
the number of operators that DeepConstr achieves more coverage
than other baselines. The proportion of increased operators is di-
vided by the intersected operators that DeepConstr and another
baseline commonly support. “%Cov Improved” indicates the aver-
age coverage improvement that DeepConstr achieved compared
to another baselines. During the evaluation, we measure only the
coverage related to the execution of operators. Coverage that is
unrelated, such as importing libraries and launching the framework,
is excluded from our coverage collection.

v.s. Manually Crafted Constraints. Based on the result of the
“#Testcase” column in Table 2, NNSmith emerges as the most effi-
cient fuzzer that outperforms all baselines, generating 3 to 10 times
more test cases on TensorFlow and PyTorch, respectively. This is
because NNSmith is designed with manually tailored constraints,
eliminating the need to explore the unknown input space. Mean-
while, even compared with these manually-tailored constraints,
DeepConstr has managed to improve coverage of 29 operators
out of 59 operators for PyTorch, improving averaged 39.00% cov-
erage for each operator. In the case of TensorFlow, DeepConstr
improved coverage for 24 operators out of 63 operators. However, it
did not achieve an overall increase in coverage, performing -4.17%
worse than NNSmith. This is because the constraint set of Tensor-
Flow is more complex than that of PyTorch, making it challenging
for DeepConstr to compete with manually-tailored constraints.
Overall, the experimental result shows that constraints refined by
DeepConstr can achieve comparative testing performance than
constraints that are manually crafted by experts.

There are two reasons for these results. First, by iteratively
measuring and refining constraints, DeepConstr can generate
constraints that achieve a level of soundness and completeness
comparable to those crafted by experts. Moreover, manually-
tailored constraints still have the possibility of overlooking corner
cases due to the complexity of operators. For example, NNSmith
has designed logical operators such as torch.logical_and and
torch.logical_or to only accept boolean tensors. However, these
operators not only accept boolean tensors but also allow other types
of tensors as input (see Listing 3). Furthermore, for the squeeze
operators such as torch.Tensor.squeeze, NNSmith restricts the

rank of its input tensor to be larger than zero, whereas the oper-
ator does not have such a constraint. Conversely, DeepConstr
generates and refines constraints without any assumption, which
allows it to successfully cover the input space that is not covered
by NNSmith.

v.s. Automatically Inferred Constraints.As shown in Table 2,
DeepConstr achieves higher coverage on 363 operator out of 623
common operators for PyTorch while increased coverage of 118
operators out of 190 operators of TensorFlow. The main reason for
this is caused by the overly strict constraints adopted by NeuRI. In
many cases, the constraint inferred by NeuRI overfits specific test
cases. For instance, NeuRI at most generates three distinct test cases
for an operator, torch.Tensor.cumsum_. This is because NeuRI
failed to infer the accurate constraint from the saved test cases,
thereby generating test cases by reusing them. As such, NeuRI
adopts a strict constraint on which fuzzers may struggle to produce
various test cases. As a result, NeuRI generates 111 test cases for
torch.Tensor.cumsum_ in 15 minutes, while DeepConstr gener-
ates 3484 test cases for the same operator at the same time. This
explains why NeuRI generally generates fewer test cases than other
baselines. For approximately 30% of the operators, NeuRI inferred
tight constraints that restrict the test input space. This results in
DeepConstr covering more branches for many operators. On av-
erage, DeepConstr improves 25.94% and 27.26% branch coverage
for PyTorch and TensorFlow, correspondingly.

Table 3: Examples of detailed constraints that is adopted by

DeepConstr and DeepConstr
−
.

Target Error Message Constraints of DeepConstr− Constraints of DeepConstr

Result type Float can’t be cast to
the desired output type Short

dtype(input) = dtype(out) ∧
dtype(input) = float32

dtype(input) = dtype(out)

Non-empty 3D or 4D (batch mode)
tensor expected for input rank(input) = 3 ∧ rank(input) ≠ 5 rank(input) = 3 ∨ rank(input) = 4

Dimension out of range (expected
to be in range of [-1, 0], but got 1) -1 < dim ∧ dim ≤ 0 -dim ≤ len(input) ∧ len(input) > dim

v.s. Constraints without Completeness. DeepConstr− is a
variant of DeepConstr that pursues only soundness and does not
address completeness when refining constraints. We compare Deep-
Constr with DeepConstr− to demonstrate that solely considering
the soundness does not guarantee higher testing effectiveness, and
completeness should be considered during constraint generation.
As shown in Table 2, DeepConstr outperforms DeepConstr− in
branch coverage, even though it generates fewer test cases within
the same time period. Specifically, DeepConstr increases cover-
age on 360 operators out of 843 operators in PyTorch. In addition,
DeepConstr gains better branch coverage on 109 operators out of
258 operators in TensorFlow.

Table 3 shows examples where DeepConstr− and DeepConstr
adopt different constraints for the same error message. In detail,
when the error message states, "Result type Float can’t be cast to
the desired output type Short," DeepConstr adopts dtype(input)
= dtype(out) as a constraint. However, DeepConstr− adopted
dtype(input) = float32 ∧ dtype(input) = float32, which
overly narrows the input space by restricting the tensor data type
to float32. Since DeepConstr− only considers soundness when
refining, it cannot identify the narrowed input space by the sub-
constraint dtype(input) = float32, thereby returning it as the

Towards More Complete Constraints for Deep Learning Library Testing via Complementary Set Guided Refinement ISSTA ’24, September 16–20, 2024, Vienna, Austria

best constraint. Similarly, an error message that states, "expected
to be in the range of [-1, 0], but got 1" indicates the need for certain
arguments (e.g., dim) to fall within the range of the tensor rank.
DeepConstr− adopts the −1 < dim ∧ dim ≤ 0 as its constraint
because the error message has explicitly referred to the range of
(−1, 0]. In addition, since the minimum value of tensor rank is zero,
setting dim to zero will always prevent the error from occurring.
However, it cannot yield diverse test cases. Conversely, DeepCon-
str can successfully identify the narrowed input space of given
constraints using the complementary set, thereby finding complete
and sound constraints.

6.2 Constraints Assessment

In this section, we evaluate the quality of constraints that have
been refined by DeepConstr and DeepConstr− to demonstrate
the capability of constraint refinement with the components that
we proposed. Specifically, we assess the effectiveness of constraint
refinement in DeepConstr and DeepConstr− by analyzing the
overall scores of constraints that they have extracted. Two key
performance metrics, soundness, and completeness, are evaluated
based on previously defined equation 6 and equation 7, respec-
tively. The other metric, 𝑛𝑢𝑚, means the number of sub-constraints
extracted for an operator.

Table 4: Statistical overview of constraints on PyTorch and

TensorFlow. 𝜇 represents themean value, and𝑚𝑖𝑑 denotes the

median value. ‘PT’ and ‘TF’ indicate PyTorch and Tensorflow,

respectively.

metrics DeepConstr DeepConstr−

PT
𝑛𝑢𝑚 𝜇 = 7.61,𝑚𝑖𝑑 = 6 𝜇 = 8.82,𝑚𝑖𝑑 = 7

soundness 𝜇 = 95.29%,𝑚𝑖𝑑 = 100.00% 𝜇 = 95.54%,𝑚𝑖𝑑 = 100.00%
completeness 𝜇 = 80.38%,𝑚𝑖𝑑 = 88.24% 𝜇 = 76.32%,𝑚𝑖𝑑 = 76.34%

TF
num 𝜇 = 7.74,𝑚𝑖𝑑 = 5 𝜇 = 9.26,𝑚𝑖𝑑 = 8

soundness 𝜇 = 94.89%,𝑚𝑖𝑑 = 100.00% 𝜇 = 94.45%,𝑚𝑖𝑑 = 100.00%
completeness 𝜇 = 89.68%,𝑚𝑖𝑑 = 100.00% 𝜇 = 85.34%,𝑚𝑖𝑑 = 95.74%

Table 4 demonstrates that the overall refinement design of Deep-
Constr using a genetic algorithm is effective in generating higher-
quality constraints. In Table 4, “𝜇” denotes the mean value and
“𝑚𝑖𝑑” indicates the median value. The data reveals that both the
DeepConstr and DeepConstr− successfully refine constraints
that resolve the error messages. This success is reflected in the
soundness columns for both PyTorch and TensorFlow, where both
DeepConstr and DeepConstr− achieve a median soundness score
of 100, with themean score of both DeepConstr andDeepConstr−
achieves 94.92% to 96.53%. The overall design of DeepConstr con-
tribute this suc This result is due to the fact that the constraint is
synthesized iteratively and gradually enhanced, leading to high-
quality constraint refinement. The num rows also indicate that
both DeepConstr and DeepConstr− demonstrate effective sub-
constraints finding ability, extracting averaged 7.61 and 8.82 on
PyTorch, and 7.74 and 9.26 on TensorFlow.

Moreover, DeepConstr demonstrates significant improvements
in completeness for both PyTorch and TensorFlow, with only a
slight reduction in soundness compared to DeepConstr− . This is

because DeepConstr− did not prioritize the completeness score
during the refinement process. As a result, DeepConstr achieved
higher coverage on many operators, as shown in Table 2. This
demonstrates that considering completeness is more important
than soundness for testing thoroughness.

In addition, it is important to note that DeepConstr extracts
fewer sub-constraints compared to DeepConstr− . This is because,
without considering completeness, one cannot determine whether
the newly added sub-constraints would be truly helpful in gener-
ating valid input or if they would just decrease the input space.
Considering completeness can mitigate this problem. Let’s consider
the first example in Table 3. Since the ground-truth constraint for
the target error message is dtype(input) = dtype(out), one of
the sub-constraints that DeepConstr− generate, dtype(input) =
float32, is not correct. It makes the tensor data type of input to
be float32, decreasing input space without satisfying the ground-
truth constraint. However, DeepConstr− , which only considers
soundness, cannot determine if this helps to generate valid input
or meaninglessly decreases input space. On the other hand, Deep-
Constr, by considering completeness, can determine whether the
sub-constraint is helpful to valid test case generation and, as a result,
remove it from the final output. In a similar way, DeepConstr−
tends to generate more sub-constraints than DeepConstr. This
insight suggests that more sub-constraints may not necessarily help
find correct constraints.

6.3 Bug Finding

To evaluate the ability of DeepConstr in bug finding, we intermit-
tently run the prototype of DeepConstr for about a month in two
mainstream DL libraries. We conducted tests on the stable versions
of PyTorch (2.2.0) and TensorFlow (2.12.0), as well as their nightly
versions. We count the bugs on the basis of bug reports, which are
classified into two statuses: fixed, a patch has been merged to fix
the bug; confirmed, it has been reproduced/diagnosed as a fault or
directly assigned to developers for fixing it.

Table 5: Overview of reported bugs.

Symptom Total Confirmed Fixed

PyTorch
Inconsistency 30 21 13
Runtime error 34 34 30
Others 10 10 4

TensorFlow
Inconsistency 6 5 2
Runtime error 4 2 2
Others 0 0 0

Total 84 72 51

Table 5 shows the details of bugs found by DeepConstr. To
sum up, we found 84 previously unknown unique bugs, 72 of
which were confirmed, out of 51 were fixed. At the time of writing
this paper, the remaining bugs are still awaiting confirmation from
developers. 11 of PyTorch bugs found by us are assigned high pri-
ority because developers regard them as critical vulnerabilities that
highly affect the normal function of DL libraries. It is important to
note that most of the bugs reside in the operators that were heavily

ISSTA ’24, September 16–20, 2024, Vienna, Austria Gwihwan Go, Chijin Zhou, Quan Zhang, Xiazijian Zou, Heyuan Shi, and Yu Jiang

tested by existing fuzzers [24, 25], which means that DeepConstr
can find bugs that other tools are not able to find out.

We also analyze the type of bugs found by DeepConstr. It identi-
fied various bug types, including 36 inconsistency bugs, 38 runtime
error bugs, and 10 other bugs. Inconsistency bugs are usually de-
tected by discrepancies in output. Specifically, these bugs occur
when an optimized computation graph yields incorrect results com-
pared to its original graph. Runtime error bugs refer to scenarios
where the DL compiler fails to compile the computational graph,
indicating issues inherent in the compile system. It includes crash
bugs such as core dumped or segmentation fault bugs. Other bugs
include errors related to documentation and error messages, and
these errors are identified through manual inspection of the train-
ing log when we found that DeepConstr encountered failures in
constraint extraction.

Responsible Bug Reporting. The number of bugs reported for
each library is closely tied to the responsiveness of its developers.
Our practice has been to wait for feedback from developers before
proceeding with further bug discovery efforts. Thus, a higher count
of reported bugs on PyTorch does not necessarily denote that Py-
Torch is less robust. Instead, it highlights its developers’ readiness
to engage. In the case of TensorFlow, after not fixing our first 10 bug
reports, we decided to stop our reporting to adhere to responsible
bug discovery practices[34].

Case Study. In the following paragraphs, we will discuss two
distinct error examples missed by the previous fuzzers but found
by DeepConstr. All of these errors were found in the operator that
have been already tested by previous fuzzers. Furthermore, all of
these errors have been assigned high-priority tags by the developers.

import torch
class model(torch.nn.Module):

def __init__(self, y):
super().__init__()
self.y = y

def forward(self, x):
z = torch.t(self.y)
y = torch.abs(input=x, out=z)
return y

storage = torch.rand([1,2])
input = torch.rand([2,1])
output = Model(storage)(input)

Listing 2: Minimized code snippet of bug sample 1.

Bug Sample 1: Inconsistency Error in the torch.abs Operator. List-
ing 2 presents a simplified Python code snippet that triggers a
bug. The code describes an operation that generates output tensors
by applying an absolute operation, saving the result to the tensor
of out argument. The bug’s root cause lies in using torch.abs
when transposed tensor passing to the argument out. Specifically,
the bug exists in as_strided() method implemented under the
torch.abswhen calling an out argument. It is designed to create a
new view of an existing tensor, specifying its size and stride. When
passing the tensor that has been applied, the transpose operation
through torch.t, as_strided() is not applied correctly, leading
to inconsistent behavior.

To find out this bug, one must identify the constraints related to
the argument out of torch.abs. However, the previous work failed

import torch
class Model(torch.nn.Module):

def forward(self, i, ot, out):
return torch.logical_or(input=i, other=ot, out=out)

input = torch.rand([3, 3, 2], dtype=torch.float32)
other = torch.rand([3, 3, 2], dtype=torch.float32)
out = torch.rand([3, 3, 2], dtype=torch.float16)
model = Model()
torch.compile(model.forward,)(i, ot, out)

Listing 3: Code snippet of bug sample 2.

to model the constraints related to them, leading them to miss this
bug. Notably, the argument out of torch.abs seldom appear in real-
world use cases. Hence, for a test case based constraint inference
fuzzer, deducing the constraints related to the out argument of
torch.t becomes difficult. In contrast, DeepConstr can deduce
constraints that rarely appear in real-world test cases, which could
easily be missed by other fuzzers.

Bug Sample 2: Core Dumped Error of Logical Operator. Listing 3
presents a minimized Python code snippet that triggers a crash in
PyTorch. The code performs an OR operation between two tensors,
i and ot, and saves the result to the tensor out. The root cause of
bug sample 2 is related to float16 legalization. Specifically, the crash
occurs when attempting to store a float32 tensor in an output tensor,
out, which was previously defined as float16 data type. NNSmith
has modeled and tested the operator torch.logical_or but failed
to detect the bug. The primary reason is that in NNSmith’s im-
plementation, torch.logical_or is only compatible with boolean
tensors. Although restricting the data type to boolean tensors aligns
with the intended use of the operator, torch.logical_or in prac-
tice imposes no such tensor data type limitations, causing NNSmith
to overlook potential vulnerabilities. In contrast, DeepConstr does
not impose data type restrictions, enabling it to uncover this bug.

7 Discussion

Limitations. While DeepConstr marks a significant advance-
ment in enhancing the completeness of constraint, it does possess
inherent limitations. Specifically, DeepConstr can not generate
constraints with below cases : (1) Incorrect Error Messages: It cannot
extract constraints from incorrect error messages, which means
the description is not related to the root cause of the error message.
(2) Constraints Related to Tensor Elements: To optimize resource
utilization, we followed the approach of other works [24, 25, 38],
and avoided individually modeling each tensor element into the
constraint. As a result, DeepConstr does not support constraints
that are related to tensor elements. For example, DeepConstr can
not extract constraints from the error message such as "number of
elements should be less than n" or "the max value of tensor element
should be bigger than 0".

Order of Error Message Resolving. The order in which error
messages are triaged is important because it affects the efficiency
of solving them. This is because a program checks conditions se-
quentially. If an earlier condition is not met, subsequent condition
will not be checked, as the program’s attention is captured by the
initial condition check. We prioritized error messages based on
their frequency of occurrence to approximate the optimal order

Towards More Complete Constraints for Deep Learning Library Testing via Complementary Set Guided Refinement ISSTA ’24, September 16–20, 2024, Vienna, Austria

for handling them. This approach is based on the observation that
randomly generated test cases often fail to meet the first condition,
thereby being caught more frequently by the earlier input checks.
While static analysis methods, such as dominance analysis [33],
could potentially offer a more precise analysis of the sequence,
these white-box analysis techniques pose greater challenges in
adaptation and could reduce the scalability of the tools. In future
work, we are interested in further exploring these methodologies to
enhance our approach’s precision without compromising the tool’s
scalability. This exploration aims to balance the depth of analysis
and the practical applicability in diverse operational environments.

Generalizability. DeepConstr can be applied to other DL
frameworks. We spent a few efforts to support NumPy [18]. We
have implemented the following steps: (1)We generated backend
code responsible for converting IR into NumPy native code (69
lines of code). (2) We mapped the NumPy native data types (e.g.,
numpy.float32, numpy.float64) to the internal data types that
DeepConstr maintains (50 lines of code). In summary, we have
integrated the NumPy backend into DeepConstr by adding 119
lines of code. It took less than 2 hours with one graduate student.
This demonstrates the generalizability of DeepConstr. We also ran
DeepConstr for 5 hours to extract constraints on NumPy operators,
and it extracts 184 sub-constraints across the 24 operators.

8 Related Work

As the DL applications expand, the stability of DL libraries be-
comes increasingly critical. As a result, many works have been
proposed for both testing DL models [16, 28, 31, 47, 48] and DL
libraries [10, 15, 24, 25, 32, 38, 41, 42, 46]. For testing DL libraries,
someone thinks that existing fuzzing techniques [21, 23, 35, 50, 51],
Python program fuzzers [22, 26] or API fuzzers [11, 14] can be the
solution. However, unlike traditional software, DL libraries more
closely resemble a domain-specific language tailored specifically
for tensor computation and neural network construction, necessi-
tating specialized testing techniques. Many customized fuzzers are
proposed for effectively testing the DL libraries. These are divided
into two categories: model-level fuzzers and operator-level fuzzers.

Model Level Fuzzer. The most direct method for testing DL
libraries is to reuse generated DL models and execute them on
these libraries. Following this, CRADLE [32] first utilizes the open-
sourced DL models and uncovers the bugs by differential testing.
However, open-sourced DL models are limited, and many are heav-
ily executed, making it hard to explore unknown vulnerabilities. To
generate more diverse DL models, LEMON [41] and Audee [17] mu-
tate the existing models with manually designed mutation rules. In
addition to reusing existing models, Muffin [15] constructs models
from scratch using a series of DL operators, and Luo [27] further
enhanced themodel generation by leveraging graph coverage strate-
gies. Nevertheless, considering that each DL operator possesses
a complicated set of constraints, the aforementioned model level
fuzzers are limited to test DL operators in restricted scenarios [25].

Operator Level Fuzzer. FreeFuzz [42] tries to fuzz each opera-
tor by mutating existing test cases of DL libraries but struggles to
generate valid test cases. To effectively generate valid test cases for
DL library testing, many studies adopted constraint-guided gen-
eration [10, 24, 25, 38, 46, 49]. NNSmith [24] utilizes constraints
written by human experts. However, the extensive manual effort

for analyzing each DL operator makes NNSmith only accommo-
date a limited number of operators, emphasizing the need for au-
tomatic constraint generation. Doctor [46] is the first approach
that automatically synthesizes constraints from the documentation.
However, constraints extracted from documentation make them
challenging for valid test case generation. NeuRI [25] tries to in-
fer the constraints from a set of invocations, such as developer
test cases. Although it achieves great success in testing a broad
range of operators, NeuRI sometimes overfits the offered test cases,
limiting its possible input space. AceTest [38] tries to infer the
constraints from the source code, but they struggle to identify the
user-controllable variables, which is the main part of the constraint.
In contrast, DeepConstr can concretely identify constraints by
using error messages and validating their completeness using a
complementary set.

LLMs for Fuzzing. As LLMs have improved, they can now be
used for fuzzing [13, 29, 44]. Some works [8, 9] have used LLMs for
testing DL libraries and found many bugs. However, using LLMs for
fuzzing presents several challenges [20]. First, having LLMs directly
generate test cases would be costly, as fuzzing involves producing
a large number of test cases [6, 39]. Secondly, test cases generated
by LLMs lack diversity, since LLMs tend to respond similarly when
given the same prompt. Finally, LLMs struggle to generate valid test
cases for complex programs due to their limited ability to process
long texts or examples [36]. In contrast, DeepConstr utilizes LLMs
to generate constraints for fuzzing. This approach mitigates the
above problems while retaining the advantages of fuzzing.

9 Conclusion

DeepConstr is a novel and general approach that generates and
refines a complicated constraint set for DL library testing. Our
method is twofold. First, we divide the complex constraint of an
operator into several independent and relatively simple constraints
guided by error messages. Next, we leverage the complementary
set of each independent constraint to identify the incomplete ar-
eas of this constraint, and thus refine it to be more complete. We
evaluate the performance of DeepConstr on two mainstream DL
libraries, i.e., PyTorch and TensorFlow,and compare to state-of-the-
art fuzzers such as NeuRI, and NNSmith. DeepConstr discovered
84 previously unknown bugs out of which 72 confirmed with 51
fixed. Compared to state-of-the-art fuzzers, DeepConstr achieves
greater coverage of 58.27% of operators supported by NeuRI and
49.15% of operators supported by NNSmith in PyTorch, and 62.1%
of operators supported by NeuRI and 38.1% of operators supported
by NNSmith in TensorFlow.

Data-Availability Statement

All data and materials supporting the findings of this study are
openly available at Zenodo [3].

Acknowledgements

We appreciate the reviewers’ valuable and insightful comments.
This research is sponsored in part by the National Key Research and
Development Project (No. 2022YFB3104000) and NSFC Program
(No. 92167101, 62021002).

ISSTA ’24, September 16–20, 2024, Vienna, Austria Gwihwan Go, Chijin Zhou, Quan Zhang, Xiazijian Zou, Heyuan Shi, and Yu Jiang

References

[1] 2022. GCOV. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[2] 2022. Source-based Code Coverage — Clang 15.0.0 documentation. https://

releases.llvm.org/15.0.0/tools/clang/docs/SourceBasedCodeCoverage.html.
[3] 2024. Artifact for DeepConstr. https://doi.org/10.5281/zenodo.12669927
[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. {TensorFlow}: a system for {Large-Scale} machine learning. In 12th
USENIX symposium on operating systems design and implementation (OSDI 16).
265–283.

[5] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[6] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2020. Fuzzing: Chal-
lenges and reflections. IEEE Software 38, 3 (2020), 79–86.

[7] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[8] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large language models are zero-shot fuzzers: Fuzzing deep-learning
libraries via large language models. In Proceedings of the 32nd ACM SIGSOFT
international symposium on software testing and analysis. 423–435.

[9] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shu-
jing Yang, and Lingming Zhang. 2024. Large language models are edge-case
generators: Crafting unusual programs for fuzzing deep learning libraries. In Pro-
ceedings of the 46th IEEE/ACM International Conference on Software Engineering.
1–13.

[10] Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang. 2022. Fuzzing
deep-learning libraries via automated relational api inference. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 44–56.

[11] Adeel Ehsan, Mohammed Ahmad M. E. Abuhaliqa, Cagatay Catal, and Deepti
Mishra. 2022. RESTful API Testing Methodologies: Rationale, Challenges, and
Solution Directions. Applied Sciences 12, 9 (2022). https://doi.org/10.3390/
app12094369

[12] Luciano Floridi and Massimo Chiriatti. 2020. GPT-3: Its nature, scope, limits, and
consequences. Minds and Machines 30 (2020), 681–694.

[13] Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang. 2024. Sedar: Obtaining High-
Quality Seeds for DBMS Fuzzing via Cross-DBMS SQL Transfer. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering. 1–12.

[14] Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. 2020. Intelligent
REST API Data Fuzzing. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for ComputingMa-
chinery, New York, NY, USA, 725–736. https://doi.org/10.1145/3368089.3409719

[15] Jiazhen Gu, Xuchuan Luo, Yangfan Zhou, and Xin Wang. 2022. Muffin: Testing
Deep Learning Libraries via Neural Architecture Fuzzing. In Proceedings of the
44th International Conference on Software Engineering (Pittsburgh, Pennsylvania)
(ICSE ’22). Association for Computing Machinery, New York, NY, USA, 1418–1430.
https://doi.org/10.1145/3510003.3510092

[16] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz: Dif-
ferential fuzzing testing of deep learning systems. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 739–743.

[17] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao
Shen. 2020. Audee: Automated Testing for Deep Learning Frameworks. In 2020
35th IEEE/ACM International Conference on Automated Software Engineering (ASE).
486–498.

[18] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

[19] John H Holland. 1992. Genetic algorithms. Scientific american 267, 1 (1992),
66–73.

[20] Yu Jiang, Jie Liang, Fuchen Ma, Yuanliang Chen, Chijin Zhou, Yuheng Shen,
Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Shanshan Li, et al. 2024. When
Fuzzing Meets LLMs: Challenges and Opportunities. In Companion Proceedings of
the 32nd ACM International Conference on the Foundations of Software Engineering.
492–496.

[21] Thijs Klooster, Fatih Turkmen, Gerben Broenink, Ruben Ten Hove, and Marcel
Böhme. 2023. Continuous fuzzing: a study of the effectiveness and scalability of

fuzzing in CI/CD pipelines. In 2023 IEEE/ACM International Workshop on Search-
Based and Fuzz Testing (SBFT). IEEE, 25–32.

[22] Wen Li, Haoran Yang, Xiapu Luo, Long Cheng, and Haipeng Cai. 2023. Pyrtfuzz:
Detecting bugs in python runtimes via two-level collaborative fuzzing. In Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. 1645–1659.

[23] Jie Liang, Zhiyong Wu, Jingzhou Fu, Yiyuan Bai, Qiang Zhang, and Yu Jiang.
2024. {WingFuzz}: Implementing Continuous Fuzzing for {DBMSs}. In 2024
USENIX Annual Technical Conference (USENIX ATC 24). 479–492.

[24] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and
Lingming Zhang. 2023. NNSmith: Generating Diverse and Valid Test Cases for
Deep Learning Compilers. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 2, ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023, Tor M. Aamodt,
Natalie D. Enright Jerger, and Michael M. Swift (Eds.). ACM, 530–543.

[25] Jiawei Liu, Jinjun Peng, Yuyao Wang, and Lingming Zhang. 2023. Neuri: Diversi-
fying dnn generation via inductive rule inference. arXiv preprint arXiv:2302.02261
(2023).

[26] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2023. An Empirical Study
of Automated Unit Test Generation for Python. Empirical Softw. Engg. 28, 2 (jan
2023), 46 pages. https://doi.org/10.1007/s10664-022-10248-w

[27] Weisi Luo, Dong Chai, Xiaoyue Run, Jiang Wang, Chunrong Fang, and Zhenyu
Chen. 2021. Graph-Based Fuzz Testing for Deep Learning Inference Engines. In
Proceedings of the 43rd International Conference on Software Engineering (Madrid,
Spain) (ICSE ’21). IEEE Press, 288–299. https://doi.org/10.1109/ICSE43902.2021.
00037

[28] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

[29] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024.
Large language model guided protocol fuzzing. In Proceedings of the 31st Annual
Network and Distributed System Security Symposium (NDSS).

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. , 8024–8035 pages.

[31] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In proceedings of the 26th
Symposium on Operating Systems Principles. 1–18.

[32] H. Pham, T. Lutellier, W. Qi, and L. Tan. 2019. CRADLE: Cross-Backend Validation
to Detect and Localize Bugs in Deep Learning Libraries. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE Computer Society,
Los Alamitos, CA, USA, 1027–1038. https://doi.org/10.1109/ICSE.2019.00107

[33] Reese T Prosser. 1959. Applications of boolean matrices to the analysis of flow
diagrams. In Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-
ACM computer conference. 133–138.

[34] John Regehr. 2017. Responsible and Effective Bugfinding. https://blog.regehr.org/
archives/2037

[35] Kostya Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for
open source software. USENIX Association, Vancouver, BC.

[36] Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. 2023. Ze-
roscrolls: A zero-shot benchmark for long text understanding. arXiv preprint
arXiv:2305.14196 (2023).

[37] Ali Shatnawi, Ghadeer Al-Bdour, Raffi Al-Qurran, and Mahmoud Al-Ayyoub.
2018. A comparative study of open source deep learning frameworks. In 2018 9th
international conference on information and communication systems (icics). IEEE,
72–77.

[38] Jingyi Shi, Yang Xiao, Yuekang Li, Yeting Li, Dongsong Yu, Chendong Yu, Hui Su,
Yufeng Chen, and Wei Huo. 2023. ACETest: Automated Constraint Extraction
for Testing Deep Learning Operators. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 690–702.

[39] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: brute force
vulnerability discovery. Pearson Education.

[40] Cornelis Joost "Keith" van Rijsbergen. 1979. Information Retrieval (2nd ed.).
Butterworth, London, GB; Boston, MA.

[41] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
Learning Library Testing via EffectiveModel Generation. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020).
Association for Computing Machinery, New York, NY, USA, 788–799. https:
//doi.org/10.1145/3368089.3409761

[42] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free
lunch for testing: Fuzzing deep-learning libraries from open source. In Proceedings
of the 44th International Conference on Software Engineering. 995–1007.

[43] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc V Le, and Denny Zhou. 2022. Chain-of-Thought Prompting

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://releases.llvm.org/15.0.0/tools/clang/docs/SourceBasedCodeCoverage.html
https://releases.llvm.org/15.0.0/tools/clang/docs/SourceBasedCodeCoverage.html
https://doi.org/10.5281/zenodo.12669927
https://doi.org/10.3390/app12094369
https://doi.org/10.3390/app12094369
https://doi.org/10.1145/3368089.3409719
https://doi.org/10.1145/3510003.3510092
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/s10664-022-10248-w
https://doi.org/10.1109/ICSE43902.2021.00037
https://doi.org/10.1109/ICSE43902.2021.00037
https://doi.org/10.1109/ICSE.2019.00107
https://blog.regehr.org/archives/2037
https://blog.regehr.org/archives/2037
https://doi.org/10.1145/3368089.3409761
https://doi.org/10.1145/3368089.3409761

Towards More Complete Constraints for Deep Learning Library Testing via Complementary Set Guided Refinement ISSTA ’24, September 16–20, 2024, Vienna, Austria

Elicits Reasoning in Large Language Models. In Advances in Neural Information
Processing Systems 35 (NeurIPS 2022) Main Conference Track.

[44] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming
Zhang. 2024. Fuzz4all: Universal fuzzing with large language models. In Pro-
ceedings of the IEEE/ACM 46th International Conference on Software Engineering.
1–13.

[45] Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2022.
Metamorphic testing of deep learning compilers. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 6, 1 (2022), 1–28.

[46] Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang,
and Michael W Godfrey. 2022. DocTer: documentation-guided fuzzing for testing
deep learning API functions. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 176–188.

[47] Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu
Jiang. 2021. Advdoor: adversarial backdoor attack of deep learning system. In
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 127–138.

[48] Quan Zhang, Yongqiang Tian, Yifeng Ding, Shanshan Li, Chengnian Sun, Yu Jiang,
and Jiaguang Sun. 2023. CoopHance: Cooperative Enhancement for Robustness
of Deep Learning Systems. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis. 753–765.

[49] Xufan Zhang, Jiawei Liu, Ning Sun, Chunrong Fang, Jia Liu, Jiang Wang, Dong
Chai, and Zhenyu Chen. 2021. Duo: Differential fuzzing for deep learning opera-
tors. IEEE Transactions on Reliability 70, 4 (2021), 1671–1685.

[50] Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang, Qing Liao, Zhiy-
ongWu, Shanshan Li, and Bin Gu. 2023. Towards better semantics exploration for
browser fuzzing. Proceedings of the ACM on Programming Languages 7, OOPSLA2,
604–631.

[51] Chijin Zhou, Quan Zhang, MingzheWang, Lihua Guo, Jie Liang, Zhe Liu, Mathias
Payer, and Yu Jiang. 2022. Minerva: browser API fuzzing with dynamic mod-ref
analysis. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2022, Singapore, Singapore, November 14-18, 2022. ACM, 1135–1147.

Received 2024-04-12; accepted 2024-07-03

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 DL Library and Constraint
	2.2 Motivation

	3 Complementary Set Guided Refinement
	4 Approach
	4.1 Raw Constraint Exploration
	4.2 Constraint Synthesis
	4.3 Constraint Measurment

	5 Implementation
	6 Evaluation
	6.1 Comparative Study
	6.2 Constraints Assessment
	6.3 Bug Finding

	7 Discussion
	8 Related Work
	9 Conclusion
	References

