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Abstract

Unit testing is crucial to ensure the validity of the code, and research

has been conducted to advance this domain. However, existing stud-

ies fail to address industry requirements, support formulti-language

static analysis and real-time unit test generation. While integrating

static analysis with a Large Language Model (LLM) could address

these challenges, it typically requires effort to implement across

programming languages. To address this, we propose LspAi, an au-

tomated unit test generation tool that leverages language analysis

tools and integrates them into a unified development environment

via the Language Server Protocol. This approach equips LLM with

multi-language static analysis capabilities, allowing a single tool to

support unit test generation across multiple languages. We evalu-

ated our method by comparing line coverage across different LLMs

and programming languages, demonstrating superior performance

and broad applicability. In projects, LspAi achieved line coverage

improvements of 145% for Java, 931% for Golang, and 95.62% for

Python compared to Copilot. In addition, we also share our lessons

learned from applying the tool in Tencent Ltd.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging; Search-based software engineering.
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1 Introduction

Unit testing plays a pivotal role in software development by en-

suring validity and reliability of code. As software systems grow

in complexity, the importance of unit tests cannot be overstated,

serving as a fundamental practice for identifying defects early and

facilitating maintainable codebases. Extensive research has been

dedicated to automating unit test generation, leading to develop-

ment of Search-Based Software Testing (SBST) tools such as Evo-

Suite [12], Randoop [28], and Pynguin [24]. More recently, the

evolution of Large Language Models (LLMs) has introduced a new

paradigm for unit test generation. Models like GPT [7] and Copi-

lot [14] can understand code context and generate relevant unit

tests, significantly improving software development efficiency.

Despite significant advancements, LLMs are still prone to gen-

erating incorrect unit tests. For example, Copilot, one of the most

popular tools used by many companies, is still capable of making

mistakes, as acknowledged by the Copilot development team [25].

Similarly, Siddiq et al. [31] found that LLM-generated test cases

show a relatively low validity rate, ranging from 2% to 12.7%, based

on the SF110 [13] benchmark. As a result, researchers have proposed

integrating static analysis with LLM to help them better under-

stand the context and generate more accurate unit tests [20, 37, 39].

However, current research does not address the following two fun-

damental requirements of the software industry, which limits the

broader adoption of these approaches in real-world settings.

First, performing static analysis across multiple program-

ming languages is challenging. Industries adopt a variety of pro-

gramming languages for different projects, and a test case generator

should ideally support multiple languages. However, as shown in

Table 1, most academic research has focused on one specific lan-

guage rather than multi-language support. This focus stems from

the difficulty of performing unified static analysis across diverse

languages. Therefore, developers are forced to build customized

analysis pipelines for each language, which requires significant

manual adaptation effort. As a result, as far as we know, there

are currently no academic tools available that can generate multi-

language unit tests using static analysis.

Second, it is challenging to support the generation of real-

time unit tests when integrating static analysis. Developers

often write unit tests concurrently with the writing of code. How-

ever, current SBST tools and LLM-integrated tools are unsuitable

for scenarios that require instant test generation, as they typically
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require the compilation of entire projects to perform static analysis

and collect coverage feedback. Consequently, the reliance of SBST

tools on coverage feedback to enhance test case quality limits their

feasibility for real-time use. This issue also persists in recent LLM

integrated tools [3, 4, 20, 21, 37, 39], which depend on heavy static

analysis and coverage feedback to mitigate LLM hallucinations. As

a result, no academic tool currently supports real-time unit test

generation, as illustrated in Table 1.

To address the aforementioned challenges, we introduce LspAi, a

real-time unit test generation tool powered by LLM and integrated

with static analysis for multi-language codebases. Our key insight is

that well-established language analysis tools exist for each program-

ming language and can be accessed through the Language Server

Protocol (LSP) in a unified way. By leveraging the LSP, we can

perform lightweight static analysis in multiple languages within a

single environment with minimal effort. Specifically, LspAi oper-

ates in two main steps: First, LspAi conducts dependency analysis

by extracting key tokens from the focal method and retrieves the

corresponding dependent source code. Second, using the retrieved

dependency source code, LspAi performs real-time unit test gener-

ation and fixing. This approach effectively leverages reliable static

analysis tools to improve LLMs’ ability.

Table 1: Survey highlighting the research gap in unit test generation.

Tools Real-Time Multi-Language

Static Analysis Support

Java Python Golang Others

UTGen [6], EvoSuite [12, 22, 41], Ran-

doop [28], HITS [37] , casmoda [27],

testspark [30], ChatUniTest [39]

✗ ✗ ✓ ✗ ✗ ✗

PynGuin [24], CodaMosa [20],

CoverUp [3], MuTAP [5] , TELPA [40],

SymPrompt [29], CLAP [35]

✗ ✗ ✗ ✓ ✗ ✗

NxtUnitGo [36]
✗ ✗ ✗ ✗ ✓ ✗

Copilot [14]
✓ ✓ ✗ ✗ ✗ ✗

LspAi
✓ ✓ ✓ ✓ ✓ ✓

LspAi brings two main benefits to developers who work in indus-

tries. First, LspAi supports real-time unit test generation without
whole project compilation, allowing developers to generate unit tests
concurrently with code writing. Second, LspAi simplifies the setup

process by only requiring a simple installation of relevant language

analysis plugins (e.g., extensions for Visual Studio Code), making it

easily adaptable to various programming languages.

We developed LspAi as an IDE (Integrated Development Environ-

ment) plugin for seamless integration and evaluated its performance

across three widely used programming languages: Java, Python,

and Golang. Our evaluation shows that LspAi consistently improves

unit test performance in terms of line coverage across real-world

projects, regardless of programming language. Compared to Copi-

lot, LspAi achieved line coverage improvements of 145% for Java,

931% for Golang, and 95.62% for Python. When compared to a naive

LLM implementation, the improvements were 122% for Java, 2,003%

for Golang, and 4.84% for Python. Additionally, we share practical

insights and lessons learned from applying LspAi in an industrial

setting at Tencent Ltd.

• We identified a research gap in current unit test generation: the

lack of support for multi-language codebases and real-time test

generation scenarios.

• We designed LspAi as an IDE plugin, a practical tool that gener-

ates effective unit tests across multiple programming languages.
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Figure 1: Overall workflow of LspAi.

The source code is available at https://github.com/THU-WingTe

cher/LSPAI and on Zenodo [16].

• We evaluated LspAi in real-world projects written in three pro-

gramming languages, demonstrating its ability to consistently

improve unit test performance. LspAi LspAi achieved line cover-

age improvements of 145% for Java, 931% for Golang, and 95.62%

for Python compared to Copilot.

2 Language Server Protocol

The Language Server Protocol (LSP) [26] is a standardized way for

development tools, like text editors and IDEs, to communicate with

language servers. A Language Server is meant to provide language-

specific tasks, such as static analysis and code action recommen-

dations. The main idea behind LSP is to provide a single, unified

protocol that allows a language server to be used across differ-

ent development environments, supporting multiple programming

languages with minimal additional setup. This means that develop-

ment tools can access advanced features for many programming

languages through the same protocol, making it easier to work with

different languages without needing to implement those features

from scratch. Before LSP, features like syntax highlighting and

code completion had to be written separately for each development

environment and programming language. With LSP, however, edi-

tors can simply connect to a language server, which provides these

features automatically, saving time and effort.

3 Design of LspAi

This section describes the design of LspAi, a unit test generation

tool that enhances unit test creation through multi-language static

analysis aided by LSP. Figure 1 illustrates LspAi’s overall workflow.

When the developer requests unit test generation for a specific

method, LspAi generates a unit test following two steps. First, LspAi

collects dependency information for the givenmethod by extracting

and retrieving token definitions. Second, it generates the unit test

based on the collected dependency information. The generated unit

test is then analyzed using LSP. If any issues are detected, LspAi

retrieves the necessary dependencies and corrects the errors.

3.1 Employed LSP Features

LspAi issues standard LSP queries to apply the same static-analysis

pipeline in any IDE and language. It relies on five key providers:

Symbol Provider. Returns a tree of files, classes, functions, and

variables; LspAi walks this tree to spot unit-test entry points and

trace variable definitions.

Semantic Token Provider. Tags each token with its role (e.g.,

keyword, function call, variable read). These tags let LspAi reason

at token level and perform fine-grained analysis.

https://github.com/THU-WingTecher/LSPAI
https://github.com/THU-WingTecher/LSPAI
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Definition Provider. Jumps from a token to its declaration. LspAi

follows these jumps to build an accurate dependency map around

the target method or class.

Reference Provider. Lists every use of a symbol. LspAi inspects

these sites to understand usage patterns and make sure generated

tests exercise real interactions.

Diagnosis Provider. Reports compile-time warnings and errors.

LspAi runs it on the generated tests, fixes any flagged issues, and

boosts the share of valid tests.

3.2 Dependency Analysis

This module gathers dependency information to generate reliable

unit tests with high coverage. The dependency information is col-

lected in three steps: token filtering, dependency retrieval, and

reference retrieval. Through this process, LspAi acquires stream-

lined, high-quality dependency information.

Token Filtering. This step enhances the quality of the data to be

collected by extracting tokens that are more likely to be relevant to

the focal method. A focal method that requires testing is typically

complex, containing numerous tokens. Analyzing every token of

the method would generate a large amount of unnecessary data,

most of which would not contribute to unit test generation. For

example, the parse method in the Parser class of the commons-

cli [8] project contains over 100 tokens within approximately 40

lines of code. Analyzing and retrieving information for over 100

tokens is inefficient and does not effectively enhance the quality

of unit tests. Therefore, appropriate token filtering is essential.

The token filtering strategy of LspAi involves two main steps:

(1) Selecting Key Tokens: LspAi consider a token is important if

it is given by the argument value of the method or is returned

by the method. (2) Selecting Associated Tokens: LspAi determine

whether the tokens are associated with key tokens, utilizing the

knowledge of the language server. Specifically, it requests the role

of tokens that co-located with the key tokens by examining their

types and modifiers through Semantic Token Provider. A co-located

token is considered meaningful if the language server considers the

token’s role as declaring or defining. Following the above steps, the

100 tokens under parse method can be streamlined to 10 tokens.

Ultimately, this module returns the extracted tokens, which LspAi

uses to retrieve further information.

Dependency Retrieval. This step involves a strategy to extract

relevant dependency information from the given tokens, ensuring

LspAi retains only essential data for unit test generation while

discarding unnecessary details from the language server. This is im-

portant because retrieved dependency information is often verbose,

including comments, unrelated properties, or large code snippets.

This can hinder unit test generation and degrade LspAi’s perfor-

mance. To address this, we apply heuristic rules based on LSP

knowledge. First, by requesting the Definition Provider using the

token’s position, we collect the symbol that defines the token. Next,

using the Symbol Provider, we identify the symbol’s type (e.g., func-
tion, class, method, variable, or property). Finally, we summarize

the relevant code snippet based on the symbol type. For example,

functions are summarized by their return type and input argu-

ments, while methods are summarized with their return type, input

arguments, and associated class member properties.

Reference Retrieval. Refering to the use case of the focal method

can enhance the correctness of generated test codes. Especially

for LLM, which determines its output based on context, much re-

search [15, 38] has proved that giving an example can enhance

the quality of its output. In this regard, LspAi collects every use

case of the focal method, utilizing Reference Provider. The collected
reference information is then passed to the next step along with

the dependency information and is used to generate unit test code.

3.3 Unit Test Generation

This module is responsible for generating reliable unit tests with

high coverage without compiling or executing code. It leverages

the given dependency information and LLM to generate unit tests.

Subsequently, to mitigate the limitations of LLM, it detects issues

in the generated code and fixes them.

Dependency-Aware Generation. LspAi generates unit tests by in-

corporating information passed by the section 3.2. In detail, we con-

struct the prompt incorporating the source code of the focal method,

natural language description, and retrieved information. We con-

struct our prompt template based on that of ChatUniTest [39]. Since

this template is Java-specific, for generating unit tests in other pro-

gramming languages, we slightly modify the prompt accordingly.

The final prompt ranges from 1000 to 1,500 tokens, depending on

the length of the focal method. The constructed prompt is then

provided to an LLM to produce the unit test.

LSP-Guided Diagnosis. This component detects issues in the

generated test code in real time without the need for compilation

or execution. LLMs can produce syntactically incorrect or incom-

pliant code due to hallucinations. Hallucination [17, 18] refers to

the generation of syntactically incorrect or semantically invalid

code that deviates from the desired output. However, in a real-time

generation setting, where compilation or execution is not feasible,

we need alternative methods to mitigate the LLM’s hallucinations.

LspAi utilizes Diagnosis Provider supported by LSP to inspect the

generated code. If Diagnosis Provider does not detect any issues,

LspAi saves the unit test code; if there is any issue, LspAi collects

them and prioritizes based on severity.

Dependency-Aware Error Fix. This step integrates dependency

information to fix errors effectively. Based on the diagnosis, LspAi

identifies the related symbol and retrieves necessary dependency

information using the Symbol Provider. This information is incor-

porated into the prompt to assist the LLM in correcting the error

alongside the necessary dependency source code. The constructed

prompt is sent to the LLM to fix the code. After the fix is made,

LspAi returns to the LSP-Guided Diagnosis step to verify whether

the issue has been resolved. If the error is fixed or the iteration limit

is reached, the corrected code is saved and presented to developers.

4 Evaluation

In this section, we comprehensively evaluate LspAi’s performance

on real-world projects across different programming languages.

4.1 Experiment Setup

Programming languages.We selected three different program-

ming languages, Python, Java, and Golang, for the experiment. We

selected Python and Java because their unit test generation capa-

bilities have been extensively studied in previous research. Golang
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was chosen for two reasons: (1) it is widely used in industry but has

received relatively little attention in academic studies, and (2) as a

relatively new language, we anticipate it presents unique challenges

for LLMs in generating valid code.

Table 2: Dataset Statistics

Project Abbr. Domain Version Language

Commons-CLI [8] CLI Cmd-line Interface eb541428 Java

Commons-CSV [9] CSV Csv file Processing 92e486ac Java

Logrus [32] LOG logging for Golang d1e6332 Golang

Cobra [11] COB Golang CLI interactions 3a6873e Golang

Black [10] BAK Python code formatter 8dc9127 Python

Crawl4AI [34] C4AI LLM Friendly Web Crawler 8878b3d Python

Baseline Selection. We selected baselines that meet the following

criteria: (1) they support unit test generation across multiple pro-

gramming languages, and (2) they can generate test code without

compiling the entire project. Most tools listed in Table 1 do not

satisfy both conditions—except for Copilot. However, the current

version of Copilot supports only a limited range of LLMs [2], which

restricts us to compare different models. Therefore, we implemented

a baseline using the same prompt template as LspAi, but without

incorporating dependency information or LSP-guided error fixing.

We refer to this version as Naive. Ultimately, we evaluated the

performance of LspAi in comparison to both Copilot and Naive.

Copilot Workflow Setting. For the Copilot implementation, we

used Copilot Language Server SDK [1] and invoked the panel com-

pletion API with templated prompts. We tried our best to simulate

a realistic usage scenario. Specifically, we followed developer rec-

ommendations for unit testing [2] and adopted the well-known

workflow [33] of Copilot. For large-scale experiments, we auto-

mated the unit test generation process by opening the code file

containing the target method, prompting Copilot to generate unit

tests, and saving them using standard unit test naming conventions.

Model Selection. To demonstrate the effectiveness of LspAi, we

evaluate it using language models with different architectures and

sizes. For architecture, we include both transformer-based models

like the GPT series [7], and mixture-of-experts (MoE) models like

DeepSeek [23] and Mistral [19]. For size variation, we test with

GPT-4o, GPT-4o-m (GPT-4o-mini), and DS-V3 (Deepseek-V3).

Real-world Projects. For a fair evaluation, we selected real-world

projects based on two criteria: (1) commonly used benchmarks in

prior research, or (2) popular open-source projects. As shown in

Table 2, we picked two projects per language. For Java, we used

Commons-CLI [8] and Commons-CSV [9], both widely used in

previous studies [37, 39]. For Golang, we selected Logrus [32] and

Cobra [11], also referenced in related work [36]. For Python, we

used Black [10], a common benchmark [20, 24], and Crawl4AI [34],

a trending project with 24.6k GitHub stars. Released in May 2024,

Crawl4AI is well-developed but likely unseen during LLM training,

making it a strong test case for generalization. In terms of scope:

Black has 472 focal methods, Crawl4AI 377, Cobra 155, Commons-

CLI 140, Commons-CSV 74, and Logrus 70. The method distribution

for Python is detailed in Figure 2.

4.2 Comparative Experiment

This section evaluates the performance of LspAi using two metrics:

line coverage and valid rate, where a test script is considered valid

black logrus crawl4ai commons-csv cobra commons-cli
Project
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Figure 2: Focal Method Stastics for Real-World Projects.

Table 3: Comparative experimental results on line coverage and valid

rate. The highest values are shown in bold.

Line Coverage Valid Rate

Model

LspAi Naive Copilot LspAi Naive Copilot

C
L
I

GPT-4o 66.99% 39.92% 24.46% 77.33% 54.67% 26.00%

GPT-4o-m 58.55% 18.78% - 59.33% 24.00% -

DS-V3 61.92% 47.65% - 79.33% 43.33% -

C
S
V

GPT-4o 50.53% 35.62% 23.94% 55.71% 31.43% 14.86%

GPT-4o-m 42.25% 17.56% - 38.57% 6.43% -

DS-V3 68.26% 41.01% - 43.57% 10.71% -

L
O
G

GPT-4o 32.95% 1.16% 1.86% 21.74% 4.29% 2.86%

GPT-4o-m 30.39% 2.78% - 14.49% 4.29% -

DS-V3 54.76% 34.11% - 40.58% 21.43% -

C
O
B

GPT-4o 15.75% 0.20% 5.39% 17.53% 10.32% 7.10%

GPT-4o-m 7.52% 2.34% - 11.04% 8.39% -

DS-V3 53.76% 16.36% - 45.54% 15.65% -

B
A
K

GPT-4o 50.44% 48.01% 26.95% 57.60% 47.35% 81.28%

GPT-4o-m 38.62% 37.28% - 51.94% 59.55% -

DS-V3 41.18% 40.24% - 71.76% 67.20% -

C
4
A
I GPT-4o 41.02% 39.71% 20.10% 56.52% 53.07% 84.58%

GPT-4o-m 42.77% 38.20% - 54.42% 66.05% -

DS-V3 42.84% 41.67% - 71.35% 66.76% -

Total 44.87% 27.02% 17.11% 50.49% 33.58% 36.11%

if it runs without any execution errors. Assertion failures are not

treated as errors. As shown in Table 3, LspAi significantly improves

both line coverage and valid rate across multiple programming

languages, projects, and LLMs.

Java. On average, LspAi improves line coverage by 122% and valid

rate by 149% compared to Naive, and by 145% and 262% respectively

compared to Copilot. The primary reason for the increased cover-

age is the dependency retrieval-guided unit test generation, which

effectively utilizes summarized dependency information of classes

and methods to cover diverse edge cases. For the averaged valid

rate, LspAi achieves substantial improvements by 145% compared

to Naive and 262% compared to Copilot. This is because of the

highly structured Java program’s nature, which allows most errors

to be detected before compilation through LSP. This is particularly

evident in the substantial valid rate improvement observed in Java

projects (e.g., CLI and CSV) compared to Naive and Copilot. These

results highlight the strength of combining static analysis with

LLMs in strongly typed languages like Java.

Golang. For Golang projects, LspAi delivers the strongest improve-

ments in unit test generation. It boosts averaged line coverage by

2,003% and valid rate by 171% over Naive, and outperforms Copi-

lot by 931% in coverage and 403% in valid rate. LLMs like GPT

often make simple mistakes in Golang tests, such as redeclaring

existing objects. This causes invalid code, especially in LOG and

COB projects, where Naive only achieved valid rates of 10.00% and
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11.45% on average. LspAi fixes these issues using LSP-Guided Diag-

nosis, raising averaged valid rates to 25.60% for LOG and 24.70% for

COB. We also found that DeepSeek performs better than GPT in

Golang tasks. When used with LspAi, it excels at fixing grammar

errors in test code. This may be due to DeepSeek’s pre-training

with large code windows and a fill-in-the-middle objective, which

helps it reuse existing code correctly. Overall, the sharp rise in both

coverage and valid rate shows that LspAi greatly improves test

quality, especially for languages where LLMs tend to struggle.

Python. For Python projects like BAK and C4AI, LspAi achieved

a modest average line coverage increase of 4.84%, and increase of

1.41% in valid rate compared to Naive. Against Copilot, it improved

averaged line coverage by 95.62% but saw a 33.17% decrease in

valid rate. This trend differs from Java and Golang results in two

ways. First, the coverage improvement is lower. This is because

LLMs already perform well in Python—Naive reached the highest

averaged valid rate of 59.99%. Also, Python’s dynamic nature makes

it harder for LspAi to detect errors early, limiting LSP’s effectiveness

and reducing valid rates in some cases. Second, Copilot produced

the highest valid rate but lowest coverage. This is because Copilot

mostly generates simple assertion lines, which cause fewer errors

but don’t exercise much code logic. Despite the lower valid rate,

LspAi still improved coverage by helping LLMs generate better

tests using retrieved dependency information. Overall, it created

tests that covered more edge cases and improved reliability.

4.3 Breakdown of LspAi

To assess LspAi in real-world scenarios, we measured its time and

token use during unit test generation, grouped by language. Each

test involved up to five fix attempts per method, with LLM access

via API. We used the same project set from Table 2, and method

counts are in Figure 2. All results in Table 4 were from GPT-4o.

On average, LspAi takes 91 seconds and 4,137 tokens to generate

and refine unit tests. For Golang, the results are especially strong:

just 49 seconds and 6,035 tokens lead to a 20x increase in line cov-

erage. This shows LspAi is both efficient and effective in languages

where LLMs typically struggle. For Python, however, the gains

are modest. Although time and token use are reasonable (about 2

minutes and 2,000 tokens), the 4% coverage boost may not justify

the cost unless test quality also improves. This makes LspAi less

suitable for Python. In summary, LspAi performs efficiently across

languages, but it shines most in areas where LLMs are weaker—like

Golang—making it a powerful option for boosting test quality in

challenging environments.

Table 4: Time and Token Usage by LspAi.

Time (milliseconds) Token

Retrieval Diagnosis GEN FIX Total GEN FIX Total

Java 38,578 19,168 11,669 16,194 85,789 1,541 2,866 4,407

Golang 5,925 5,337 11,177 26,938 49,377 1,150 4,885 6,035

Python 98,533 22,033 13,203 4,604 138,373 1,460 510 1,970

Averaged 47,738 15,512 12,016 15,912 91,179 1,383 2,753 4,137

5 Lessons Learned

In this section, we introduce some lessons learned during building

tool for multi-language unit test generation and applying the tool

to development environment in Tecent Ltd.

Alignment between Research and Industrial Needs.We iden-

tified a significant gap between academic research and industrial

requirements in the domain of unit test generation. While academic

efforts predominantly aim for high code coverage, they often over-

look practical aspects essential for real-world usage. From our indus-

try practice, developers urgently need a lightweight tool that can

generate unit tests without whole-project compilation. Additionally,

academic research has focused on specific programming languages,

such as Python and Java, leaving a gap in support for other lan-

guages. For example, Golang is widely adopted in many industries,

yet few academic studies have addressed unit test generation for

Golang. LspAi was developed to bridge these gaps. Although it may

not achieve the same level of code coverage as academic tools like

EvoSuite [12], LspAi is designed with industrial applicability in

mind, aiming for widespread use in industry scenarios.

Varying Language Proficiency of LLMs. Our experimental anal-

ysis revealed that LLMs exhibit varying levels of proficiency across

programming languages, directly impacting effectiveness of LspAi.

Specifically, LLMs frequently make errors when generating Golang

code, which affects the quality of generated unit tests. These find-

ings highlight the necessity for LLM-integrated tools to adapt strate-

gies to the specific demands and complexities of each programming

language, thereby maximizing utility and effectiveness.

Demands for Better Integration Methods. This work opens

several promising avenues for future research in multi-language

unit test generation through the LSP. Currently, LspAi employs

prompt engineering, a low-cost but limited method for harnessing

the full potential of LLMs. A more sophisticated integration method

is needed to build a retrieval system that can fully exploit the ca-

pabilities of LLMs. Besides, the integration of additional language

server functionalities, such as code intelligence and code action rec-

ommendations, could further enhance the accuracy and reliability

of generated unit tests. In our industrial practice, we found that

developers often require a more comprehensive approach to make

the generated unit tests more reliable and useful.

6 Conclusion

We introduced LspAi, a practical real-time unit test generation

tool that leverages LLMs and integrates static analysis through

the LSP to support multi-language codebases. LspAi addresses the

critical gap in existing research by enabling seamless unit test gen-

eration across diverse programming languages without the need

for project-wide compilation, thereby facilitating concurrent test

creation alongside code development. Implemented as an IDE plu-

gin, LspAi simplifies adoption for developers by requiring only the

installation of appropriate language analysis tools. Our comprehen-

sive evaluation of Java, Python, and Golang projects demonstrated

that LspAi consistently enhances both line coverage and valid rate

compared to baseline approaches. These results highlight LspAi’s

potential to serve as a scalable and language-agnostic solution for

improving test quality in modern software development.
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